Simplify (4×3)⁶/(3×4)⁹: Complex Exponential Expression

Question

Insert the corresponding expression:

(4×3)6(3×4)9= \frac{\left(4\times3\right)^6}{\left(3\times4\right)^9}=

Video Solution

Step-by-Step Solution

The given expression is: (4×3)6(3×4)9 \frac{\left(4\times3\right)^6}{\left(3\times4\right)^9} .

We want to simplify this expression using the laws of exponents.

First, notice that the base is the same in both the numerator and the denominator: 4×34 \times 3. We can apply the property of exponents that involves a quotient:

aman=amn \frac{a^m}{a^n} = a^{m-n}

Thus, we can rewrite the expression as:

(4×3)69 \left(4 \times 3\right)^{6-9}

Subtract the exponents: 69=36 - 9 = -3.

The expression now becomes:

(4×3)3 \left(4 \times 3\right)^{-3}

To express this with a positive exponent, recall the rule:

an=1an a^{-n} = \frac{1}{a^n}

Therefore, (4×3)3 \left(4 \times 3\right)^{-3} can be written as:

1(4×3)3 \frac{1}{\left(4 \times 3\right)^3}

The solution to the question is: 1(4×3)3 \frac{1}{\left(4\times3\right)^3}

Answer

1(4×3)3 \frac{1}{\left(4\times3\right)^3}