Simplify (2×3)⁶ ÷ (2×3)³: Power Division Problem

Question

Insert the corresponding expression:

(2×3)6(2×3)3= \frac{\left(2\times3\right)^{6}}{\left(2\times3\right)^3}=

Video Solution

Step-by-Step Solution

Let's solve the given expression step by step by using the power of a quotient rule for exponents. The rule states that anam=anm \frac{a^n}{a^m} = a^{n-m} , where a a is any non-zero number, and n n and m m are integers.

Given the expression: (2×3)6(2×3)3 \frac{\left(2\times3\right)^{6}}{\left(2\times3\right)^3}

  • First, apply the power of a quotient rule for exponents formula: (2×3)6(2×3)3=(2×3)63 \frac{\left(2\times3\right)^{6}}{\left(2\times3\right)^3} = \left(2\times3\right)^{6-3} .

  • The exponent in the numerator is 6, and the exponent in the denominator is 3.

  • Subtract the exponent in the denominator from the exponent in the numerator: 63=3 6 - 3 = 3 .

  • Thus, the expression simplifies to: (2×3)3 \left(2\times3\right)^3 .

The solution to the question is: (2×3)63 \left(2\times3\right)^{6-3}

Answer

(2×3)63 \left(2\times3\right)^{6-3}