Similar Triangles: Calculate Second Triangle Perimeter Given Areas 361cm² and 81cm²

In similar triangles, the area of the triangles is 361 cm² and 81 cm². If it is known that the perimeter of the first triangle is 38, what is the perimeter of the second triangle?

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Find the perimeter of the second triangle
00:03 Similar triangles according to given data
00:09 The ratio of perimeters equals the square root of the areas ratio
00:24 We'll substitute appropriate values according to the given data and solve for the perimeter
00:38 Make sure to take the square root of both numerator and denominator
00:49 Isolate P2
00:59 And this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

In similar triangles, the area of the triangles is 361 cm² and 81 cm². If it is known that the perimeter of the first triangle is 38, what is the perimeter of the second triangle?

2

Step-by-step solution

To begin with we can determine the perimeter of the second triangle by using the equation below.

P2P1=S2S1 \frac{P_2}{P_1}=\sqrt{\frac{S_2}{S_1}}

We insert the existing data

P238=81361 \frac{P_2}{38}=\sqrt{\frac{81}{361}}

P238=81361=919 \frac{P_2}{38}=\frac{\sqrt{81}}{\sqrt{361}}=\frac{9}{19}

Lastly we multiply by 38 to obtain the following answer:

P2=919×38=18 P_2=\frac{9}{19}\times38=18

3

Final Answer

18

Practice Quiz

Test your knowledge with interactive questions

If it is known that both triangles are equilateral, are they therefore similar?

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Similar Triangles and Polygons questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations