Similar Triangles: Calculate Length FE Using 8y and 7m Measurements

Question

Triangle DFE is similar to triangle ABC.

Calculate the length of FE.8y8y8y7m7m7m9y9y9yAAABBBCCCDDDEEEFFF

Video Solution

Solution Steps

00:00 Find FE
00:03 The triangles are similar according to the given data
00:15 Find the similarity ratio
00:30 Substitute appropriate values and solve for FE
00:42 Simplify what we can
00:47 Isolate FE
00:56 And this is the solution to the question

Step-by-Step Solution

Let's look at the order of letters of the triangles that match each other and see the ratio of the sides.

We will write accordingly:

Triangle ABC is similar to triangle DFE

The order of similarity ratio will be:

ABDF=BCFE=ACDE \frac{AB}{DF}=\frac{BC}{FE}=\frac{AC}{DE}

Now let's insert the existing data we have in the diagram:

8y9y=7mFE \frac{8y}{9y}=\frac{7m}{FE}

Let's reduce y and we get:

89FE=7m \frac{8}{9}FE=7m

FE=98×7m FE=\frac{9}{8}\times7m

FE=778m FE=7\frac{7}{8}m

Answer

778m 7\frac{7}{8}m