Maximum Value Identification: Comparing Numerical Options

Choose the largest value

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Choose the largest value
00:03 Let's observe the numbers themselves
00:12 The root of a number larger than another number is also larger than its root
00:17 Therefore this is the largest expression
00:20 This is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Choose the largest value

2

Step-by-step solution

To determine which of the suggested options has the largest numerical value, we will use the definition of root as a power:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}} Let's substitute each one of the square roots in the suggested options with powers:

2212331244125512 \sqrt{2}\rightarrow2^{\frac{1}{2}}\\ \sqrt{3}\rightarrow3^{\frac{1}{2}}\\ \sqrt{4}\rightarrow4^{\frac{1}{2}}\\ \sqrt{5}\rightarrow5^{\frac{1}{2}}\\ Now let's note that all the expressions we got have the same exponent (and their bases are positive, we'll also mention, although it's obvious), therefore we can determine the trend between them using only the trend between their bases, since it's identical to it:

5>4>3>2(>0)512>412>312>212 5>4>3>2\hspace{4pt} (>0)\\ \downarrow\\ 5^{\frac{1}{2}}>4^{\frac{1}{2}} >3^{\frac{1}{2}}>2^{\frac{1}{2}} In other words, we got that:

5>4>3>2 \sqrt{5}>\sqrt{4}>\sqrt{3}>\sqrt{2} Therefore the correct answer is answer D.

3

Final Answer

5 \sqrt{5}

Practice Quiz

Test your knowledge with interactive questions

Solve the following exercise:

\( \sqrt{\frac{2}{4}}= \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Rules of Roots questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations