Maximum Value Selection: Comparing Numerical Quantities

Question

Choose the largest value

Video Solution

Solution Steps

00:00 Choose the largest value
00:03 When multiplying the root of a number (A) by the root of another number (B)
00:06 The result equals the root of their product (A times B)
00:09 We'll use this formula in our exercise and calculate the products
00:12 We'll use this method for each expression and find the largest one
00:21 And this is the solution to the question

Step-by-Step Solution

To determine which of the suggested options has the largest numerical value, we will use two laws of exponents:

a. Definition of root as an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}}

b. Law of exponents for an exponent applied to terms in parentheses (in reverse order):

anbn=(ab)n a^n\cdot b^n=(a\cdot b)^n

Let's start by converting the square root in each of the suggested options (except D) to exponential notation, using the law of exponents mentioned in a above:

36136121126661261294912412 \sqrt{36}\cdot\sqrt{1} \rightarrow 36^{\frac{1}{2}}\cdot1^{\frac{1}{2}}\\ \sqrt{6}\cdot\sqrt{6} \rightarrow 6^{\frac{1}{2}}\cdot6^{\frac{1}{2}}\\ \sqrt{9}\cdot\sqrt{4} \rightarrow 9^{\frac{1}{2}}\cdot4^{\frac{1}{2}}\\ We'll continue, since both terms in the multiplication (in all the options we're dealing with now) have the same exponent, we can use the law of exponents mentioned in b above and combine them together in the multiplication within parentheses which are raised to the same exponent:

3612112(361)12=3612612612(66)12=3612912412(94)12=3612 36^{\frac{1}{2}}\cdot1^{\frac{1}{2}} \rightarrow (36\cdot1)^{\frac{1}{2}}=36^{\frac{1}{2}} \\ 6^{\frac{1}{2}}\cdot6^{\frac{1}{2}}\rightarrow(6\cdot6)^{\frac{1}{2}}=36^{\frac{1}{2}} \\ 9^{\frac{1}{2}}\cdot4^{\frac{1}{2}} \rightarrow (9\cdot4)^{\frac{1}{2}}=36^{\frac{1}{2}} \\ Let's summarize what we've done so far, we got that:

361=361266=361294=3612 \sqrt{36}\cdot\sqrt{1}=36^{\frac{1}{2}}\\ \sqrt{6}\cdot\sqrt{6}= 36^{\frac{1}{2}}\\ \sqrt{9}\cdot\sqrt{4}= 36^{\frac{1}{2}}\\ Note now that the values of all expressions suggested in options A-C are equal to each other.

Therefore, the correct answer is D.

Answer

All answers have the same value