Match Equivalent Expressions: (x+7)(y+5) and Their Expanded Forms

Question

Join expressions of equal value

  1. (y+5)(x+7) (y+5)(x+7)

  2. (x+5)(y+7) (x+5)(y+7)

  3. (x5)(y7) (x-5)(y-7)

  4. (x5)(y+7) (x-5)(y+7)

    a.xy+7y+5x+35 xy+7y+5x+35

    b.xy+7x+5y+35 xy+7x+5y+35

    c.xy7x5y+35 xy-7x-5y+35

    d.xy+7x5y35 xy+7x-5y-35

Video Solution

Step-by-Step Solution

To solve this problem, we'll match each bracketed pair of algebraic terms with its equivalent expanded form using the distributive property.

Step-by-Step Solution:

Expression 1: (y+5)(x+7)(y+5)(x+7)

  • Apply FOIL method:
  • First: yx=xyy \cdot x = xy
    Outside: y7=7yy \cdot 7 = 7y
    Inside: 5x=5x5 \cdot x = 5x
    Last: 57=355 \cdot 7 = 35
  • Combine: xy+7y+5x+35xy + 7y + 5x + 35
  • Match: Option a (xy+7y+5x+35)(xy + 7y + 5x + 35)

Expression 2: (x+5)(y+7)(x+5)(y+7)

  • Apply FOIL method:
  • First: xy=xyx \cdot y = xy
    Outside: x7=7xx \cdot 7 = 7x
    Inside: 5y=5y5 \cdot y = 5y
    Last: 57=355 \cdot 7 = 35
  • Combine: xy+7x+5y+35xy + 7x + 5y + 35
  • Match: Option b (xy+7x+5y+35)(xy + 7x + 5y + 35)

Expression 3: (x5)(y7)(x-5)(y-7)

  • Apply FOIL method:
  • First: xy=xyx \cdot y = xy
    Outside: x(7)=7xx \cdot (-7) = -7x
    Inside: (5)y=5y(-5) \cdot y = -5y
    Last: (5)(7)=35(-5) \cdot (-7) = 35
  • Combine: xy7x5y+35xy - 7x - 5y + 35
  • Match: Option c (xy7x5y+35)(xy - 7x - 5y + 35)

Expression 4: (x5)(y+7)(x-5)(y+7)

  • Apply FOIL method:
  • First: xy=xyx \cdot y = xy
    Outside: x7=7xx \cdot 7 = 7x
    Inside: (5)y=5y(-5) \cdot y = -5y
    Last: (5)7=35(-5) \cdot 7 = -35
  • Combine: xy+7x5y35xy + 7x - 5y - 35
  • Match: Option d (xy+7x5y35)(xy + 7x - 5y - 35)

By matching each expression with its expanded equivalent, we conclude:

1-a, 2-b, 3-c, 4-d

Answer

1-a, 2-b, 3-c, 4-d