Match Equivalent Expressions: 3(y+b)+4x and Related Forms

Question

Join expressions of equal value

  1. 3(y+b)+4x 3(y+b)+4x

  2. (3+4x)(y+b) (3+4x)(y+b)

  3. (4y+3)(x+b) (4y+3)(x+b)

    a.3y+3b+4x 3y+3b+4x

    b.4yx+4yb+3x+3b 4yx+4yb+3x+3b

    c.3y+3b+4xy+4xb 3y+3b+4xy+4xb

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Expand each of the given expressions using the distributive property.
  • Step 2: Simplify the resulting expressions.
  • Step 3: Match the simplified expressions with options a, b, and c.

Now, let's work through each step:
Step 1: Start with the first expression 3(y+b)+4x 3(y+b) + 4x .
Applying the distributive property: 3y+3b+4x=3y+3b+4x 3 \cdot y + 3 \cdot b + 4x = 3y + 3b + 4x . This matches with option a: 3y+3b+4x 3y+3b+4x .

Step 2: Consider the second expression (3+4x)(y+b) (3+4x)(y+b) .
Expanding using the distributive property, we get: 3(y+b)+4x(y+b)=3y+3b+4xy+4xb 3(y+b) + 4x(y+b) = 3y + 3b + 4xy + 4xb . This matches with option c: 3y+3b+4xy+4xb 3y+3b+4xy+4xb .

Step 3: Finally, expand the third expression (4y+3)(x+b) (4y+3)(x+b) .
Apply the distributive property: 4y(x+b)+3(x+b)=4yx+4yb+3x+3b 4y(x+b) + 3(x+b) = 4yx + 4yb + 3x + 3b . This matches with option b: 4yx+4yb+3x+3b 4yx+4yb+3x+3b .

Therefore, the matches are:
First expression matches option a
Second expression matches option c
Third expression matches option b

Therefore, the solution to the problem is 1-a, 2-c, 3-b.

Answer

1-a, 2-c, 3-b