Match Equivalent Expressions: (2a+b)(b+4) and Related Polynomials

Question

Join expressions of equal value

  1. (2a+b)(b+4) (2a+b)(b+4)

  2. (4+a)(2b+b) (4+a)(2b+b)

  3. (2ab)(b4) (2a-b)(b-4)

  4. (2ab)(b+4) (2a-b)(b+4)

    a.2ab8ab2+4b 2ab-8a-b^2+4b

    b.12b+3ab 12b+3ab

    c.2ab+8ab24b 2ab+8a-b^2-4b

    d.2ab+8a+b2+4b 2ab+8a+b^2+4b

Video Solution

Step-by-Step Solution

To solve this problem, we need to expand each given expression and compare it to the list of provided expanded expressions.

Let's expand each of the four expressions:

  • Expression 1: (2a+b)(b+4) (2a+b)(b+4)
  • Applying the distributive property:

    (2a+b)(b)+(2a+b)(4)=2ab+b2+8a+4b (2a+b)(b) + (2a+b)(4) = 2ab + b^2 + 8a + 4b This matches the expanded form 2ab+b2+8a+4b 2ab + b^2 + 8a + 4b , option d.
  • Expression 2: (4+a)(2b+b)=(4+a)(3b) (4+a)(2b+b) = (4+a)(3b)
  • Distributing the terms:

    3b4+3ba=12b+3ab 3b \cdot 4 + 3b \cdot a = 12b + 3ab This matches the expanded form 12b+3ab 12b + 3ab , option b.
  • Expression 3: (2ab)(b4) (2a-b)(b-4)
  • Distributing the terms:

    2ab2a4bb+b4=2ab8ab2+4b 2a \cdot b - 2a \cdot 4 - b \cdot b + b \cdot 4 = 2ab - 8a - b^2 + 4b This matches the expanded form 2ab8ab2+4b 2ab - 8a - b^2 + 4b , option a.
  • Expression 4: (2ab)(b+4) (2a-b)(b+4)
  • Distributing the terms:

    2ab+2a4bbb4=2ab+8ab24b 2a \cdot b + 2a \cdot 4 - b \cdot b - b \cdot 4 = 2ab + 8a - b^2 - 4b This matches the expanded form 2ab+8ab24b 2ab + 8a - b^2 - 4b , option c.

Therefore, the correct matching is as follows:

  • Expression 1: (2a+b)(b+4) (2a+b)(b+4) matches with 2ab+8a+b2+4b 2ab+8a+b^2+4b
  • Expression 2: (4+a)(2b+b) (4+a)(2b+b) matches with 12b+3ab 12b+3ab
  • Expression 3: (2ab)(b4) (2a-b)(b-4) matches with 2ab8ab2+4b 2ab-8a-b^2+4b
  • Expression 4: (2ab)(b+4) (2a-b)(b+4) matches with 2ab+8ab24b 2ab+8a-b^2-4b

Thus, the correct answer is: 1-d, 2-b, 3-a, 4-c.

Answer

1-d, 2-b, 3-a, 4-c