Examples with solutions for Power Property of Logorithms: Using variables

Exercise #1

xln7= x\ln7=

Video Solution

Answer

ln7x \ln7^x

Exercise #2

nlogxa= n\log_xa=

Video Solution

Answer

logxan \log_xa^n

Exercise #3

Solve for X:

log3(x+2)log29=4 \log_3(x+2)\cdot\log_29=4

Video Solution

Answer

2 2

Exercise #4

xlogm13x= x\log_m\frac{1}{3^x}=

Video Solution

Answer

x2logm3 -x^2\log_m3

Exercise #5

Calculate X:

2log(x+4)=1 2\log(x+4)=1

Video Solution

Answer

4+10 -4+\sqrt{10}

Exercise #6

12log3(x4)=log3(3x2+5x+1) \frac{1}{2}\log_3(x^4)=\log_3(3x^2+5x+1)

x=? x=\text{?}

Video Solution

Answer

54±174 -\frac{5}{4}\pm\frac{\sqrt{17}}{4}

Exercise #7

2log(x+1)=log(2x2+8x) 2\log(x+1)=\log(2x^2+8x)

x=? x=\text{?}

Video Solution

Answer

3+10 -3+\sqrt{10}

Exercise #8

log47×log149aclog4b= \frac{\log_47\times\log_{\frac{1}{49}}a}{c\log_4b}=

Video Solution

Answer

logbc1a \log_{b^c}\frac{1}{\sqrt{a}}

Exercise #9

logx16×ln7lnxln4logx49= \log_x16\times\frac{\ln7-\ln x}{\ln4}-\log_x49=

Video Solution

Answer

2 -2

Exercise #10

(2log32+log3x)log23log2x=3x7 (2\log_32+\log_3x)\log_23-\log_2x=3x-7

x=? x=\text{?}

Video Solution

Answer

3 3

Exercise #11

logx4+logx30.25xlogx11+x=3 \frac{\log_x4+\log_x30.25}{x\log_x11}+x=3

x=? x=\text{?}

Video Solution

Answer

2 2

Exercise #12

1log2x6×log236=log5(x+5)log52 \frac{1}{\log_{2x}6}\times\log_236=\frac{\log_5(x+5)}{\log_52}

x=? x=\text{?}

Video Solution

Answer

1.25 1.25

Exercise #13

Find X

1logx42×xlogx16+4x2=7x+2 \frac{1}{\log_{x^4}2}\times x\log_x16+4x^2=7x+2

Video Solution

Answer

9+1138 \frac{-9+\sqrt{113}}{8}