Power Property of Logorithms: Resulting in a quadratic equation

Examples with solutions for Power Property of Logorithms: Resulting in a quadratic equation

Exercise #1

Solve for X:

log3(x+2)log29=4 \log_3(x+2)\cdot\log_29=4

Video Solution

Answer

2 2

Exercise #2

Calculate X:

2log(x+4)=1 2\log(x+4)=1

Video Solution

Answer

4+10 -4+\sqrt{10}

Exercise #3

2log(x+1)=log(2x2+8x) 2\log(x+1)=\log(2x^2+8x)

x=? x=\text{?}

Video Solution

Answer

3+10 -3+\sqrt{10}

Exercise #4

12log3(x4)=log3(3x2+5x+1) \frac{1}{2}\log_3(x^4)=\log_3(3x^2+5x+1)

x=? x=\text{?}

Video Solution

Answer

54±174 -\frac{5}{4}\pm\frac{\sqrt{17}}{4}

Exercise #5

Find the domain X where the inequality exists

2\log_3x<\log_3(x^2+2x-12)

Video Solution

Answer

6 < x

Exercise #6

Find the domain of X given the following:

\log_{\frac{1}{7}}(x^2+3x)<2\log_{\frac{1}{7}}(3x+1)

Video Solution

Answer

No solution

Exercise #7

1log2x6×log236=log5(x+5)log52 \frac{1}{\log_{2x}6}\times\log_236=\frac{\log_5(x+5)}{\log_52}

x=? x=\text{?}

Video Solution

Answer

1.25 1.25

Exercise #8

Find X

1logx42×xlogx16+4x2=7x+2 \frac{1}{\log_{x^4}2}\times x\log_x16+4x^2=7x+2

Video Solution

Answer

9+1138 \frac{-9+\sqrt{113}}{8}