Solve for X:
Solve for X:
\( \log_3(x+2)\cdot\log_29=4 \)
Calculate X:
\( 2\log(x+4)=1 \)
\( 2\log(x+1)=\log(2x^2+8x) \)
\( x=\text{?} \)
\( \frac{1}{2}\log_3(x^4)=\log_3(3x^2+5x+1) \)
\( x=\text{?} \)
Find the domain X where the inequality exists
\( 2\log_3x<\log_3(x^2+2x-12) \)
Solve for X:
Calculate X:
Find the domain X where the inequality exists
2\log_3x<\log_3(x^2+2x-12)
6 < x
Find the domain of X given the following:
\( \log_{\frac{1}{7}}(x^2+3x)<2\log_{\frac{1}{7}}(3x+1) \)
\( \frac{1}{\log_{2x}6}\times\log_236=\frac{\log_5(x+5)}{\log_52} \)
\( x=\text{?} \)
Find X
\( \frac{1}{\log_{x^4}2}\times x\log_x16+4x^2=7x+2 \)
Find the domain of X given the following:
\log_{\frac{1}{7}}(x^2+3x)<2\log_{\frac{1}{7}}(3x+1)
No solution
Find X