5×331=
\( 5\times3\frac{1}{3}= \)
\( 3\times2\frac{1}{4}= \)
\( \frac{1}{5}\times\frac{7}{8}\times2\frac{2}{3}= \)
\( \frac{3}{4}\times\frac{2}{3}\times2\frac{1}{4}x= \)
\( \frac{7}{8}\times2\frac{7}{8}\times\frac{1}{4}= \)
We will use the distributive property of multiplication and separate the fraction into an addition exercise between fractions. This allows us to work with smaller numbers and simplify the operation
Reminder - The distributive property of multiplication actually allows us to separate the larger term in the multiplication exercise into a sum or difference of smaller numbers, which makes the multiplication operation easier and gives us the ability to solve the exercise without a calculator
We will use the distributive property formula
Let's solve what's in the left parentheses:
Let's solve what's in the right parentheses:
And we get the exercise:
And now let's see the solution centered:
We will use the distributive property of multiplication and separate the fraction into an addition exercise between fractions. This allows us to work with smaller numbers and simplify the operation
Reminder - The distributive property of multiplication allows us to break down the larger term in the multiplication exercise into a sum or difference of smaller numbers, which makes the multiplication operation easier and gives us the ability to solve the exercise without a calculator
We will use the distributive property formula
Let's solve what's in the left parentheses:
Let's solve what's in the right parentheses:
And we get the exercise:
And now let's see the solution centered:
First, let's convert the mixed fraction to an improper fraction as follows:
Let's solve the equation in the numerator:
Since the only operation in the equation is multiplication, we'll combine everything into one equation:
Let's simplify the 8 in the numerator and denominator of the fraction:
Let's solve the equations in the numerator and denominator and we get:
Let's begin by combining the simple fractions into a single multiplication exercise:
Let's now proceed to solve the exercise in the numerator and denominator:
Finally we'll simplify the simple fraction in order to obtain the following:
First, let's convert the mixed fraction to a simple fraction as follows:
Let's solve the exercise in the numerator:
Since the only operation in the exercise is multiplication, we'll combine everything into one exercise:
Let's solve the exercises in the numerator and denominator:
\( \frac{2}{3}\times7\frac{2}{3}\times3\frac{1}{2}= \)
\( 3\frac{5}{6}\times5\frac{5}{6}\times\frac{1}{3}x= \)
\( 9\times3\frac{8}{9}= \)
\( 5\cdot\big(2\frac{1}{2}+1\frac{1}{6}+\frac{3}{4}\big)= \)
First, we'll convert the mixed fractions to simple fractions as follows:
Let's solve the exercises in the fraction multiplier:
Since the only operation in the exercise is multiplication, we'll combine everything into one exercise and get:
First, let's convert all mixed fractions to simple fractions:
Let's solve the exercises with the eight fractions:
Since the exercise only involves multiplication, we'll combine all the numerators and denominators: