Examples with solutions for Multiplication of Integers by a Fraction and a Mixed number: More than two fractions

Exercise #1

15×78×223= \frac{1}{5}\times\frac{7}{8}\times2\frac{2}{3}=

Video Solution

Step-by-Step Solution

First, let's convert the mixed fraction to an improper fraction as follows:

15×78×3×2+23= \frac{1}{5}\times\frac{7}{8}\times\frac{3\times2+2}{3}=

Let's solve the equation in the numerator:

15×78×6+23= \frac{1}{5}\times\frac{7}{8}\times\frac{6+2}{3}=

15×78×83= \frac{1}{5}\times\frac{7}{8}\times\frac{8}{3}=

Since the only operation in the equation is multiplication, we'll combine everything into one equation:

1×7×85×8×3= \frac{1\times7\times8}{5\times8\times3}=

Let's simplify the 8 in the numerator and denominator of the fraction:

1×75×3= \frac{1\times7}{5\times3}=

Let's solve the equations in the numerator and denominator and we get:

715 \frac{7}{15}

Answer

715 \frac{7}{15}

Exercise #2

34×23×214x= \frac{3}{4}\times\frac{2}{3}\times2\frac{1}{4}x=

Video Solution

Step-by-Step Solution

Let's begin by combining the simple fractions into a single multiplication exercise:

3×24×3×214x= \frac{3\times2}{4\times3}\times2\frac{1}{4}x=

Let's now proceed to solve the exercise in the numerator and denominator:

612×214x= \frac{6}{12}\times2\frac{1}{4}x=

Finally we'll simplify the simple fraction in order to obtain the following:

12×214x=118x \frac{1}{2}\times2\frac{1}{4}x=1\frac{1}{8}x

Answer

118x 1\frac{1}{8}x

Exercise #3

78×278×14= \frac{7}{8}\times2\frac{7}{8}\times\frac{1}{4}=

Video Solution

Step-by-Step Solution

First, let's convert the mixed fraction to a simple fraction as follows:

78×8×2+78×14= \frac{7}{8}\times\frac{8\times2+7}{8}\times\frac{1}{4}=

Let's solve the exercise in the numerator:

78×16+78×14= \frac{7}{8}\times\frac{16+7}{8}\times\frac{1}{4}=

78×238×14= \frac{7}{8}\times\frac{23}{8}\times\frac{1}{4}=

Since the only operation in the exercise is multiplication, we'll combine everything into one exercise:

7×23×18×8×4= \frac{7\times23\times1}{8\times8\times4}=

Let's solve the exercises in the numerator and denominator:

7×2364×4=161256 \frac{7\times23}{64\times4}=\frac{161}{256}

Answer

161256 \frac{161}{256}

Exercise #4

23×723×312= \frac{2}{3}\times7\frac{2}{3}\times3\frac{1}{2}=

Video Solution

Step-by-Step Solution

First, we'll convert the mixed fractions to simple fractions as follows:

23×7×3+23×3×2+12= \frac{2}{3}\times\frac{7\times3+2}{3}\times\frac{3\times2+1}{2}=

Let's solve the exercises in the fraction multiplier:

23×21+23×6+12= \frac{2}{3}\times\frac{21+2}{3}\times\frac{6+1}{2}=

23×233×72= \frac{2}{3}\times\frac{23}{3}\times\frac{7}{2}=

Since the only operation in the exercise is multiplication, we'll combine everything into one exercise and get:

2×23×73×3×2=46×79×2=32218 \frac{2\times23\times7}{3\times3\times2}=\frac{46\times7}{9\times2}=\frac{322}{18}

Answer

1789 17\frac{8}{9}

Exercise #5

356×556×13x= 3\frac{5}{6}\times5\frac{5}{6}\times\frac{1}{3}x=

Video Solution

Step-by-Step Solution

First, let's convert all mixed fractions to simple fractions:

3×6+56×5×6+56×13x= \frac{3\times6+5}{6}\times\frac{5\times6+5}{6}\times\frac{1}{3}x=

Let's solve the exercises with the eight fractions:

18+56×30+56×13x= \frac{18+5}{6}\times\frac{30+5}{6}\times\frac{1}{3}x=

236×356×13x= \frac{23}{6}\times\frac{35}{6}\times\frac{1}{3}x=

Since the exercise only involves multiplication, we'll combine all the numerators and denominators:

23×356×6×3x=805108x \frac{23\times35}{6\times6\times3}x=\frac{805}{108}x

Answer

805108x \frac{805}{108}x