Examples with solutions for The Quadratic Formula: Using short multiplication formulas

Exercise #1

Find X

7=5x2+8x+(x+4)2 7=5x^2+8x+(x+4)^2

Video Solution

Answer

43±106 -\frac{4}{3}\pm\frac{\sqrt{10}}{6}

Exercise #2

Find X

(3x+1)2+8=12 (3x+1)^2+8=12

Video Solution

Answer

x1=13,x2=1 x_1=\frac{1}{3},x_2=-1

Exercise #3

Find X

7x+1+(2x+3)2=(4x+2)2 7x+1+(2x+3)^2=(4x+2)^2

Video Solution

Answer

1±338 \frac{1\pm\sqrt{33}}{8}

Exercise #4

Solve the following equation:

x3+1(x1)2=x+4 \frac{x^3+1}{(x-1)^2}=x+4

Video Solution

Answer

x=3,12 x=3,\frac{1}{2}

Exercise #5

Solve the following equation:

(x+3)2=4x -(x+3)^2=4x

Video Solution

Answer

x1=1,x2=9 x_1=-1,x_2=-9

Exercise #6

Solve the following equation:

(x+2)2=(2x+3)2 (x+2)^2=(2x+3)^2

Video Solution

Answer

x1=1,x2=53 x_1=-1,x_2=-\frac{5}{3}

Exercise #7

Solve the following equation:

(x4)2+3x2=16x+12 (x-4)^2+3x^2=-16x+12

Video Solution

Answer

x=1 x=-1

Exercise #8

Solve the following equation:

(x+3)2+2x2=18 (x+3)^2+2x^2=18

Video Solution

Answer

x1=1,x2=3 x_1=1,x_2=-3

Exercise #9

Solve the following equation:

(x5)25=12+2x (x-5)^2-5=-12+2x

Video Solution

Answer

x1=8,x2=4 x_1=8,x_2=4

Exercise #10

Solve the following equation:

(x+3)2=2x+5 (x+3)^2=2x+5

Video Solution

Answer

x=2 x=-2

Exercise #11

Solve the equation

2x22x=(x+1)2 2x^2-2x=(x+1)^2

Video Solution

Answer

Answers a + b

Exercise #12

(1x+12)2(1x+13)2=8164 \frac{(\frac{1}{x}+\frac{1}{2})^2}{(\frac{1}{x}+\frac{1}{3})^2}=\frac{81}{64}

Find X

Video Solution

Answer

x=1,177 x=1,-\frac{17}{7}

Exercise #13

Solve the following equation:

(x5)25=10+2x (x-5)^2-5=10+2x

Video Solution

Answer

x1=6+1042,x2=61042 x_1=6+\frac{\sqrt{104}}{2},\\x_2=6-\frac{\sqrt{104}}{2}

Exercise #14

Solve the following equation:

x3+1(x+1)2=x \frac{x^3+1}{(x+1)^2}=x

Video Solution

Answer

x=12 x=\frac{1}{2}

Exercise #15

Solve the following equation:

1(x+1)2+1x+1=1 \frac{1}{(x+1)^2}+\frac{1}{x+1}=1

Video Solution

Answer

12[1±5] -\frac{1}{2}[1\pm\sqrt{5}\rbrack