Isosceles Trapezoids: Using angle properties

Examples with solutions for Isosceles Trapezoids: Using angle properties

Exercise #1

D=50° ∢D=50°

The isosceles trapezoid

What is B ∢B ?

AAABBBDDDCCC50°

Video Solution

Step-by-Step Solution

Let's recall that in an isosceles trapezoid, the sum of the two angles on each of the trapezoid's legs equals 180 degrees.

In other words:

A+C=180 A+C=180

B+D=180 B+D=180

Since angle D is known to us, we can calculate:

18050=B 180-50=B

130=B 130=B

Answer

130°

Exercise #2

Given: C=2x ∢C=2x

A=120° ∢A=120°

isosceles trapezoid.

Find x.

AAABBBDDDCCC120°2x

Video Solution

Step-by-Step Solution

Given that the trapezoid is isosceles and the angles on both sides are equal, it can be argued that:

C=D ∢C=∢D

A=B ∢A=∢B

We know that the sum of the angles of a quadrilateral is 360 degrees.

Therefore we can create the formula:

A+B+C+D=360 ∢A+∢B+∢C+∢D=360

We replace according to the existing data:

120+120+2x+2x=360 120+120+2x+2x=360

 240+4x=360 240+4x=360

4x=360240 4x=360-240

4x=120 4x=120

We divide the two sections by 4:

4x4=1204 \frac{4x}{4}=\frac{120}{4}

x=30 x=30

Answer

30°

Exercise #3

In an isosceles trapezoid ABCD

B=3x ∢B=3x

D=x ∢D=x


Calculate the size of angle B ∢B .

Video Solution

Step-by-Step Solution

To answer the question, we must know an important rule about isosceles trapezoids:

The sum of the angles that define each of the trapezoidal sides (not the bases) is equal to 180

Therefore:

∢B+∢D=180

3X+X=180

4X=180

X=45

It's important to remember that this is still not the solution, because we were asked for angle B,

Therefore:

3*45 = 135

And this is the solution!

Answer

135°

Exercise #4

Below is an isosceles trapezoid.

B=2y+20 ∢B=2y+20

D=60 ∢D=60

Find B ∢B .

AAABBBDDDCCC2y+2060°

Video Solution

Step-by-Step Solution

To answer the exercise, certain information is needed:

  1. In a quadrilateral the sum of the interior angles is 180.

  2. The isosceles trapezoid has equal angles.

  3. From here it is we know that the sum of the angles adjacent to a side of the trapezoid is 180°.

 

We turn this conclusion into an exercise:

2y+20+60=180

We add up the relevant angles

2y+80=180

We move the sections:

2y=180-80

2y=100

Divided by 2

y=50

When we substitute Y we get:

2(50)+20=120

And this is the solution!

Answer

120°

Exercise #5

Given: A=120° ∢A=120°

The isosceles trapezoid

Find a: C ∢C

AAABBBDDDCCC120°

Video Solution

Answer

60°

Exercise #6

Given: A=y+20 ∢A=y+20

D=50 ∢D=50

trapecio isósceles.

Find a A ∢A

AAABBBDDDCCCy+2050°

Video Solution

Answer

130