Examples with solutions for Power of a Product: Variable in the base of the power

Exercise #1

(5x3)3= (5\cdot x\cdot3)^3=

Video Solution

Step-by-Step Solution

We use the formula:

(a×b)n=anbn (a\times b)^n=a^nb^n

(5×x×3)3=(15x)3 (5\times x\times3)^3=(15x)^3

(15x)3=(15×x)3 (15x)^3=(15\times x)^3

153x3 15^3x^3

Answer

153x3 15^3\cdot x^3

Exercise #2

(y×x×3)5= (y\times x\times3)^5=

Video Solution

Step-by-Step Solution

We use the formula:

(a×b)n=anbn (a\times b)^n=a^nb^n

(y×x×3)5=y5x535 (y\times x\times3)^5=y^5x^53^5

Answer

y5×x5×35 y^5\times x^5\times3^5

Exercise #3

(ab8)2= (a\cdot b\cdot8)^2=

Video Solution

Step-by-Step Solution

We use the formula

(a×b)x=axbx (a\times b)^x=a^xb^x

Therefore, we obtain:

a2b282 a^2b^28^2

Answer

a2b282 a^2\cdot b^2\cdot8^2

Exercise #4

(a56y)5= (a\cdot5\cdot6\cdot y)^5=

Video Solution

Step-by-Step Solution

We use the formula:

(a×b)x=axbx (a\times b)^x=a^xb^x

Therefore, we obtain:

(a×5×6×y)5=(a×30×y)5 (a\times5\times6\times y)^5=(a\times30\times y)^5

a5305y5 a^530^5y^5

Answer

a5305y5 a^5\cdot30^5\cdot y^5

Exercise #5

(y×7×3)4= (y\times7\times3)^4=

Video Solution

Step-by-Step Solution

We use the power law for multiplication within parentheses:

(xy)n=xnyn (x\cdot y)^n=x^n\cdot y^n

We apply it in the problem:

(y73)4=y47434 (y\cdot7\cdot3)^4=y^4\cdot7^4\cdot3^4

Therefore, the correct answer is option a.

Note:

From the formula of the power property mentioned above, we can understand that it applies not only to two terms within parentheses, but also for multiple terms within parentheses.

Answer

y4×74×34 y^4\times7^4\times3^4

Exercise #6

(x2×a3)14= (x^2\times a^3)^{\frac{1}{4}}=

Video Solution

Step-by-Step Solution

Let's solve this in two stages. In the first stage, we'll use the power rule for a power of a product in parentheses:

(zt)n=zntn (z\cdot t)^n=z^n\cdot t^n

which states that when raising a product in parentheses to a power, each factor in the product is raised to that power when opening the parentheses,

Let's apply this rule to our problem:

(x2a3)14=(x2)14(a3)14 (x^2\cdot a^3)^{\frac{1}{4}}=(x^2)^{\frac{1}{4}}\cdot(a^3)^{\frac{1}{4}}

where when opening the parentheses, we applied the power to each factor of the product separately, but since each of these factors is being raised to a power, we did this carefully and used parentheses,

Next, we'll use the power rule for a power of a power:

(bm)n=bmn (b^m)^n=b^{m\cdot n}

Let's apply this rule to the expression we got:

(x2)14(a3)14=x214a314=x24a34=x12a34 (x^2)^{\frac{1}{4}}\cdot(a^3)^{\frac{1}{4}}=x^{2\cdot\frac{1}{4}}\cdot a^{3\cdot\frac{1}{4}}=x^{\frac{2}{4}}\cdot a^{\frac{3}{4}}=x^{\frac{1}{2}}\cdot a^{\frac{3}{4}}

where in the second stage we performed the multiplication in the exponents of the factors we obtained, while remembering that multiplying fractions means multiplying their numerators, and then - in the final stage, we simplified the fraction in the power of the first factor in the resulting product.

Therefore, the correct answer is answer A.

Answer

x12×a34 x^{\frac{1}{2}}\times a^{\frac{3}{4}}

Exercise #7

Insert the corresponding expression:

(y×x)2= \left(y\times x\right)^2=

Video Solution

Answer

y2×x2 y^2\times x^2

Exercise #8

Insert the corresponding expression:

(y×a)5= \left(y\times a\right)^5=

Video Solution

Answer

y5×a5 y^5\times a^5

Exercise #9

Insert the corresponding expression:

(a×b)3= \left(a\times b\right)^3=

Video Solution

Answer

a3×b3 a^3\times b^3

Exercise #10

Insert the corresponding expression:

(5×b×a)4= \left(5\times b\times a\right)^4=

Video Solution

Answer

54×b4×a4 5^4\times b^4\times a^4

Exercise #11

Insert the corresponding expression:

(b×9×a)6= \left(b\times9\times a\right)^6=

Video Solution

Answer

b6×96×a6 b^6\times9^6\times a^6

Exercise #12

Insert the corresponding expression:

(c×b×a)2= \left(c\times b\times a\right)^2=

Video Solution

Answer

a'+b' are correct

Exercise #13

Insert the corresponding expression:

(b×z×a)5= \left(b\times z\times a\right)^5=

Video Solution

Answer

a5×b5×z5 a^5\times b^5\times z^5

Exercise #14

Insert the corresponding expression:

(2×x)2= \left(2\times x\right)^2=

Video Solution

Answer

22×x2 2^2\times x^2

Exercise #15

Insert the following expression:

(y×3)2= \left(y\times3\right)^2=

Video Solution

Answer

y2×32 y^2\times3^2

Exercise #16

Insert the corresponding expression:

(a×3)3= \left(a\times3\right)^3=

Video Solution

Answer

a3×33 a^3\times3^3

Exercise #17

Insert the corresponding expression:

(6×b)4= \left(6\times b\right)^4=

Video Solution

Answer

64×b4 6^4\times b^4

Exercise #18

Insert the corresponding expression:

(7×4×a)5= \left(7\times4\times a\right)^5=

Video Solution

Answer

75×45×a5 7^5\times4^5\times a^5

Exercise #19

Insert the corresponding expression:

x7×97×y7= x^7\times9^7\times y^7=

Video Solution

Answer

(x×9×y)7 \left(x\times9\times y\right)^7

Exercise #20

Insert the corresponding expression:

85×b5×z5= 8^5\times b^5\times z^5=

Video Solution

Answer

(8×b×z)5 \left(8\times b\times z\right)^5