Examples with solutions for Power of a Product: Combination of different bases

Exercise #1

Insert the corresponding expression:

1012×96×912= 10^{12}\times9^6\times9^{12}=

Video Solution

Step-by-Step Solution

Given 1012 10^{12} and 912 9^{12} , apply the property am×bm=(a×b)m a^m \times b^m = (a \times b)^m , to rewrite part of the expression as:

1012×912=(10×9)12 10^{12} \times 9^{12} = (10 \times 9)^{12} .

The expression now becomes:

(10×9)12×96 (10 \times 9)^{12} \times 9^6 .

Therefore, the expression 1012×96×912 10^{12} \times 9^6 \times 9^{12} simplifies to (10×9)12×96 (10 \times 9)^{12} \times 9^6 .

Answer

(10×9)12×96 \left(10\times9\right)^{12}\times9^6

Exercise #2

Insert the corresponding expression:

87×88×97= 8^7\times8^8\times9^7=

Video Solution

Step-by-Step Solution

The goal is to express the given expression 87×88×978^7 \times 8^8 \times 9^7 using properties of exponents.

First, observe that 878^7 and 979^7 share a common exponent of 77. So, they can be factored as:

(8×9)7(8 \times 9)^7.

This handles the product 87×978^7 \times 9^7. Now, include 888^8 which is not part of the factoring:

(8×9)7×88(8 \times 9)^7 \times 8^8.

This resulting expression matches the provided possible choice.

Therefore, the rewritten expression is (8×9)7×88\left(8 \times 9\right)^7 \times 8^8.

Answer

(8×9)7×88 \left(8\times9\right)^7\times8^8

Exercise #3

Reduce the following equation:

825×73×103×525×5= 8^{25}\times7^3\times10^3\times5^{25}\times5=

Video Solution

Step-by-Step Solution

Let's simplify the expression 825×73×103×525×5 8^{25} \times 7^3 \times 10^3 \times 5^{25} \times 5 .

Firstly, take note of the terms that we can combine based on their exponents:

  • Combine 825 8^{25} and 525 5^{25} : Using the property am×bm=(a×b)m a^m \times b^m = (a \times b)^m , we have:
    825×525=(8×5)25 8^{25} \times 5^{25} = (8 \times 5)^{25} .
  • The terms 73 7^3 and 103 10^3 can be combined similarly: 73×103=(7×10)3 7^3 \times 10^3 = (7 \times 10)^3 .
  • Remain aware of the remaining factor of 5 5 which does not pair with others.

Putting these together, the expression can be rewritten as:

(8×5)25×(7×10)3×5 (8 \times 5)^{25} \times (7 \times 10)^3 \times 5

The expression is now fully simplified using the rules of exponents and the indicated product combinations.

Thus, the correct rewritten form of the expression is:

(8×5)25×(7×10)3×5 \left(8\times5\right)^{25}\times\left(7\times10\right)^3\times5

Answer

(8×5)25×(7×10)3×5 \left(8\times5\right)^{25}\times\left(7\times10\right)^3\times5

Exercise #4

Reduce the following equation:

76×132×42×87×92= 7^6\times13^2\times4^2\times8^7\times9^2=

Video Solution

Step-by-Step Solution

Let's solve the problem by following these steps:

Step 1: Identify terms that share a common power. We have 13213^2, 424^2, and 929^2, all raised to 2.

Step 2: Use the power of a product rule: (a×b×c)m=am×bm×cm(a \times b \times c)^m = a^m \times b^m \times c^m.

Step 3: Combine these terms: 132×42×92=(13×4×9)213^2 \times 4^2 \times 9^2 = (13 \times 4 \times 9)^2.

Step 4: Substitute back into the original expression:
76×132×42×87×92=76×(13×4×9)2×877^6 \times 13^2 \times 4^2 \times 8^7 \times 9^2 = 7^6 \times (13 \times 4 \times 9)^2 \times 8^7.

Therefore, the expression reduces to 76×(13×4×9)2×87 7^6 \times (13 \times 4 \times 9)^2 \times 8^7 .

Answer

76×(13×4×9)2×87 7^6\times\left(13\times4\times9\right)^2\times8^7

Exercise #5

39×124×69×49×44×79= ? 3^9\times12^4\times6^9\times4^9\times4^4\times7^9=\text{ ?}

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Group terms with the same exponent to utilize the power of a product rule.
  • Step 2: Combine terms under each group using the power of a product property.
  • Step 3: Match the result to one of the multiple-choice options provided.

Now, let's work through each step:
Step 1: Observe the expression 39×124×69×49×44×79 3^9 \times 12^4 \times 6^9 \times 4^9 \times 4^4 \times 7^9 . Group the terms with exponents of 9: 39,69,49, 3^9, 6^9, 4^9, and 79 7^9 . Group those with exponents of 4: 124 12^4 and 44 4^4 .

Step 2: For the terms with exponent 9, apply the power of a product rule: (3×6×4×7)9 (3 \times 6 \times 4 \times 7)^9

For the terms with exponent 4, apply the power of a product rule: (12×4)4 (12 \times 4)^4

Step 3: Combine these to form the expression: (3×6×4×7)9×(12×4)4 (3 \times 6 \times 4 \times 7)^9 \times (12 \times 4)^4

Therefore, the solution to the problem is (3×6×4×7)9×(12×4)4 \left(3 \times 6 \times 4 \times 7\right)^9 \times \left(12 \times 4\right)^4 . This corresponds to choice 3.

Answer

(3×6×4×7)9×(12×4)4 \left(3\times6\times4\times7\right)^9\times\left(12\times4\right)^4

Exercise #6

Insert the corresponding expression:

24×45×64= 2^4\times4^5\times6^4=

Video Solution

Answer

(2×6)4×45 \left(2\times6\right)^4\times4^5

Exercise #7

Insert the corresponding expression:

106×44×56= 10^6\times4^4\times5^6=

Video Solution

Answer

(10×5)6×44 \left(10\times5\right)^6\times4^4

Exercise #8

Insert the corresponding expression:

202×43×22= 20^2\times4^3\times2^2=

Video Solution

Answer

(20×2)2×43 \left(20\times2\right)^2\times4^3

Exercise #9

Reduce the following equation:

311×124×69×49×44×79= 3^{11}\times12^4\times6^9\times4^9\times4^4\times7^9=

Video Solution

Answer

311×(12×4)4(6×4×7)9 3^{11}\times\left(12\times4\right)^4\left(6\times4\times7\right)^9

Exercise #10

Reduce the following equation:

33×124×69×43×44×79= 3^3\times12^4\times6^9\times4^3\times4^4\times7^9=

Video Solution

Answer

(3×4)3×(12×4)4×(6×7)9 \left(3\times4\right)^3\times\left(12\times4\right)^4\times\left(6\times7\right)^9

Exercise #11

Reduce the following equation:

27×207×37×57×82×112= 2^7\times20^7\times3^7\times5^7\times8^2\times11^2=

Video Solution

Answer

(8×11)2×(2×20×3×5)7 \left(8\times11\right)^2\times\left(2\times20\times3\times5\right)^7

Exercise #12

Reduce the following equation:

55×411×25×511×311= 5^5\times4^{11}\times2^5\times5^{11}\times3^{11}=

Video Solution

Answer

(5×2)5×(4×5×3)11 \left(5\times2\right)^5\times\left(4\times5\times3\right)^{11}

Exercise #13

Reduce the following equation:

55×411×25×511= 5^5\times4^{11}\times2^5\times5^{11}=

Video Solution

Answer

(5×2)5×(4×5)11 \left(5\times2\right)^5\times\left(4\times5\right)^{11}

Exercise #14

Reduce the following equation:

31×32×33×41×42×43= 3^1\times3^2\times3^3\times4^1\times4^2\times4^3=

Video Solution

Answer

(3×4)1(3×4)2(3×4)3 \left(3\times4\right)^1\left(3\times4\right)^2\left(3\times4\right)^3

Exercise #15

Reduce the following equation:

28×1723×223×88×48= 2^8\times17^{23}\times2^{23}\times8^8\times4^8=

Video Solution

Answer

(17×2)23×(2×8×4)8 \left(17\times2\right)^{23}\times\left(2\times8\times4\right)^8

Exercise #16

Reduce the following equation:

2520×725×1025×525= 25^{20}\times7^{25}\times10^{25}\times5^{25}=

Video Solution

Answer

2520×(7×10×5)25 25^{20}\times\left(7\times10\times5\right)^{25}

Exercise #17

Simplify the following equation:

27×204×34×57×82×112= 2^7\times20^4\times3^4\times5^7\times8^2\times11^2=

Video Solution

Answer

(2×5)7(20×3)4(8×11)2 \left(2\times5\right)^7\left(20\times3\right)^4\left(8\times11\right)^2