Examples with solutions for Powers: Using the laws of exponents

Exercise #1

What is the result of the following power?

(23)3 (\frac{2}{3})^3

Video Solution

Step-by-Step Solution

To solve the given power expression, we need to apply the formula for powers of a fraction. The expression we are given is:
(23)3 \left(\frac{2}{3}\right)^3

Let's break down the steps:

  • When we raise a fraction to a power, we apply the exponent to both the numerator and the denominator separately. This means raising both 2 and 3 to the power of 3.
  • Thus, we calculate:
    23=8 2^3 = 8 and 33=27 3^3 = 27 .
  • Therefore, (23)3=2333=827 \left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{27} .

So, the result of the expression (23)3 \left(\frac{2}{3}\right)^3 is 827 \frac{8}{27} .

Answer

827 \frac{8}{27}

Exercise #2

Calculate and indicate the answer:

(829)2:22+32 (\sqrt{8}\cdot\sqrt{2}-\sqrt{9})^2:2^2+3^2

Video Solution

Answer

113 \frac{1}{13}