Inequalities with Absolute Values: Understanding inequality

Examples with solutions for Inequalities with Absolute Values: Understanding inequality

Exercise #1

Which diagram represents the solution to the inequality below? 5-8x<7x+3

Video Solution

Step-by-Step Solution

First, we will move the elements:

5-8x>7x+3

5-3>7x+8x
2>13x

We divide the answer by 13, and we get:

x > \frac{2}{13}

Answer

Exercise #2

What is the solution to the following inequality?

10x43x8 10x-4≤-3x-8

Video Solution

Step-by-Step Solution

In the exercise, we have an inequality equation.

We treat the inequality as an equation with the sign -=,

And we only refer to it if we need to multiply or divide by 0.

 10x43x8 10x-4 ≤ -3x-8

We start by organizing the sections:

10x+3x48 10x+3x-4 ≤ -8

13x48 13x-4 ≤ -8

13x4 13x ≤ -4

Divide by 13 to isolate the X

x413 x≤-\frac{4}{13}

Let's look again at the options we were asked about:

Answer A is with different data and therefore was rejected.

Answer C shows a case where X is greater than413 -\frac{4}{13} , although we know it is small, so it is rejected.

Answer D shows a case (according to the white circle) where X is not equal to413 -\frac{4}{13} , and only smaller than it. We know it must be large and equal, so this answer is rejected.

 

Therefore, answer B is the correct one!

Answer

Exercise #3

What is the solution to the inequality shown in the diagram?

-43

Video Solution

Answer

3x 3 ≤ x

Exercise #4

Which inequality is represented by the numerical axis below?

-7-20

Video Solution

Answer

\( -7

Exercise #5

Which diagram corresponds to the inequality below?

40x+575x1325x+7 40x+57≤5x-13≤25x+7

What is its solution?

Video Solution

Answer

-2-1

No solution.