Zero Exponent Rule: Using the laws of exponents

Examples with solutions for Zero Exponent Rule: Using the laws of exponents

Exercise #1

9380=? \frac{9\cdot3}{8^0}=\text{?}

Video Solution

Step-by-Step Solution

We use the formula:

a0=1 a^0=1

9×380=9×31=9×3 \frac{9\times3}{8^0}=\frac{9\times3}{1}=9\times3

We know that:

9=32 9=3^2

Therefore, we obtain:

32×3=32×31 3^2\times3=3^2\times3^1

We use the formula:

am×an=am+n a^m\times a^n=a^{m+n}

32×31=32+1=33 3^2\times3^1=3^{2+1}=3^3

Answer

33 3^3

Exercise #2

7483(17)4=? 7^4\cdot8^3\cdot(\frac{1}{7})^4=\text{?}

Video Solution

Step-by-Step Solution

We use the formula:

(ab)n=anbn (\frac{a}{b})^n=\frac{a^n}{b^n}

We decompose the fraction inside of the parentheses:

(17)4=1474 (\frac{1}{7})^4=\frac{1^4}{7^4}

We obtain:

74×83×1474 7^4\times8^3\times\frac{1^4}{7^4}

We simplify the powers: 74 7^4

We obtain:

83×14 8^3\times1^4

Remember that the number 1 in any power is equal to 1, thus we obtain:

83×1=83 8^3\times1=8^3

Answer

83 8^3

Exercise #3

53505255= 5^{-3}\cdot5^0\cdot5^2\cdot5^5=

Video Solution

Step-by-Step Solution

We use the power property to multiply terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n} Keep in mind that this property is also valid for several terms in the multiplication and not just for two, for example for the multiplication of three terms with the same base we obtain:

amanak=am+nak=am+n+k a^m\cdot a^n\cdot a^k=a^{m+n}\cdot a^k=a^{m+n+k} When we use the mentioned power property twice, we could also perform the same calculation for four terms of the multiplication of five, etc.,

Let's return to the problem:

Keep in mind that all the terms of the multiplication have the same base, so we will use the previous property:

53505255=53+0+2+5=54 5^{-3}\cdot5^0\cdot5^2\cdot5^5=5^{-3+0+2+5}=5^4 Therefore, the correct answer is option c.

Note:

Keep in mind that 50=1 5^0=1

Answer

54 5^4

Exercise #4

406736490=? \frac{4^0\cdot6^7}{36^4\cdot9^0}=\text{?}

Video Solution

Answer

16 \frac{1}{6}

Exercise #5

454614=? 4^5-4^6\cdot\frac{1}{4}=\text{?}

Video Solution

Answer

0

Exercise #6

53+5353=? 5^3+5^{-3}\cdot5^3=\text{?}

Video Solution

Answer

53+1 5^3+1

Exercise #7

(3)584(3)3(3)2(3)5=? \frac{(-3)^5\cdot8^4}{(-3)^3(-3)^2(-3)^{-5}}=\text{?}

Video Solution

Answer

3584 -3^5\cdot8^4

Exercise #8

20345492=? \frac{2^0\cdot3^{-4}}{5^4\cdot9^2}=\text{?}

Video Solution

Answer

15438 \frac{1}{5^4\cdot3^8}

Exercise #9

923463=? \frac{9^2\cdot3^{-4}}{6^3}=\text{?}

Video Solution

Answer

63 6^{-3}

Exercise #10

3319351932193=? 3^{-3}\cdot\frac{19^{35}\cdot19^{-32}}{19^3}=\text{?}

Video Solution

Answer

127 \frac{1}{27}

Exercise #11

b126(1b)2a=? \sqrt[6]{b^{12}}\cdot(\frac{1}{b})^2\cdot a=\text{?}

Video Solution

Answer

a a