Examples with solutions for Square of sum: Resulting in a quadratic equation

Exercise #1

Solve the following equation:

(2x+1)2x+2+(x+2)22x+1=4.5x \frac{(2x+1)^2}{x+2}+\frac{(x+2)^2}{2x+1}=4.5x

Step-by-Step Solution

To solve the equation, let's start by getting rid of the denominators.

To do this, we'll multiply the denominators:

(2x+1)2(2x+1)+(x+2)2(x+2)=4.5x(2x+1)(x+2) (2x+1)^2\cdot(2x+1)+(x+2)^2\cdot(x+2)=4.5x(2x+1)(x+2)

Let's start by opening the parentheses on the left side, mainly using the distributive property:

(4x2+4x+1)(2x+1)+(x2+4x+4)(x+2)=4.5x(2x+1)(x+2) (4x^2+4x+1)\cdot(2x+1)+(x^2+4x+4)\cdot(x+2)=4.5x(2x+1)(x+2)

Let's continue by opening the parentheses on the right side of the equation:

(4x2+4x+1)(2x+1)+(x2+4x+4)(x+2)=4.5x(2x2+5x+2) (4x^2+4x+1)\cdot(2x+1)+(x^2+4x+4)\cdot(x+2)=4.5x(2x^2+5x+2) Let's continue and open the parentheses on the right side of the equation:

(4x2+4x+1)(2x+1)+(x2+4x+4)(x+2)=9x3+22.5x+9x (4x^2+4x+1)\cdot(2x+1)+(x^2+4x+4)\cdot(x+2)=9x^3+22.5x+9x

Now let's go back and simplify the parentheses on the left side of the equation:

8x3+8x2+2x+4x2+4x+1+x3+4x2+4x+2x2+8x+8=9x3+22.5x+9x 8x^3+8x^2+2x+4x^2+4x+1+x^3+4x^2+4x+2x^2+8x+8=9x^3+22.5x+9x

Let's combine like terms:

9x3+18x2+18x+9=9x3+22.5x+9x 9x^3+18x^2+18x+9=9x^3+22.5x+9x

Notice that all terms can be divided by 9, so let's do that:

x3+2x2+2x+1=x3+2.5x+x x^3+2x^2+2x+1=x^3+2.5x+x

Let's move all numbers to one side:

x3x3+2x22.5x2+2xx+9=0 x^3-x^3+2x^2-2.5x^2+2x-x+9=0

And we get:

0.5x2x1=0 0.5x^2-x-1=0

To get rid of the one-half coefficient, let's multiply the entire equation by 2

x22x2=0 x^2-2x-2=0

Now we can use the square root formula, and we get-

2±122 \frac{2±\sqrt{12}}{2}

Let's use the properties of square roots to simplify the square root of 12:

2±232 \frac{2±2\sqrt{3}}{2} Let's divide both numerator and denominator by 2 and we get:

1±3 1±\sqrt{3}

Answer

x=1±3 x=1±\sqrt{3}

Exercise #2

Solve the following equation:

(x+3)2+2x2=18 (x+3)^2+2x^2=18

Video Solution

Answer

x1=1,x2=3 x_1=1,x_2=-3

Exercise #3

Find X

(3x+1)2+8=12 (3x+1)^2+8=12

Video Solution

Answer

x1=13,x2=1 x_1=\frac{1}{3},x_2=-1

Exercise #4

Find X

7=5x2+8x+(x+4)2 7=5x^2+8x+(x+4)^2

Video Solution

Answer

43±106 -\frac{4}{3}\pm\frac{\sqrt{10}}{6}

Exercise #5

Solve the following equation:

1(x+1)2+1x+1=1 \frac{1}{(x+1)^2}+\frac{1}{x+1}=1

Video Solution

Answer

12[1±5] -\frac{1}{2}[1\pm\sqrt{5}\rbrack

Exercise #6

Given the equation. Find its solution

13x2+4x=8(x+3)2 13x^2+4x=8(x+3)^2

Video Solution

Answer

x1=10.21,x2=1.41 x_1=10.21,x_2=-1.41

Exercise #7

Find X

7x+1+(2x+3)2=(4x+2)2 7x+1+(2x+3)^2=(4x+2)^2

Video Solution

Answer

1±338 \frac{1\pm\sqrt{33}}{8}

Exercise #8

Solve the equation

2x22x=(x+1)2 2x^2-2x=(x+1)^2

Video Solution

Answer

Answers a + b

Exercise #9

Solve the following equation:

(x+1)2=(2x+1)2 (-x+1)^2=(2x+1)^2

Video Solution

Answer

x1=0,x2=2 x_1=0,x_2=-2

Exercise #10

Solve the following equation:

(x+3)2=2x+5 (x+3)^2=2x+5

Video Solution

Answer

x=2 x=-2

Exercise #11

Solve the following equation:

x3+1(x+1)2=x \frac{x^3+1}{(x+1)^2}=x

Video Solution

Answer

x=12 x=\frac{1}{2}

Exercise #12

(1x+12)2(1x+13)2=8164 \frac{(\frac{1}{x}+\frac{1}{2})^2}{(\frac{1}{x}+\frac{1}{3})^2}=\frac{81}{64}

Find X

Video Solution

Answer

x=1,177 x=1,-\frac{17}{7}

Exercise #13

Solve the following system of equations:

{x+y=61+6xy=9 \begin{cases} \sqrt{x}+\sqrt{y}=\sqrt{\sqrt{61}+6} \\ xy=9 \end{cases}

Video Solution

Answer

x=6122.5 x=\frac{\sqrt{61}}{2}-2.5

y=612+2.5 y=\frac{\sqrt{61}}{2}+2.5

or

x=612+2.5 x=\frac{\sqrt{61}}{2}+2.5

y=6122.5 y=\frac{\sqrt{61}}{2}-2.5

Exercise #14

Solve the following equation:

ax2+5a+x=(3+a)x2(x+a)2 ax^2+5a+x=(3+a)x^2-(x+a)^2

Video Solution

Answer

3.644a,0.023a -3.644\ge a,-0.023\le a