Given the rectangle ABCD
AB=X the ratio between AB and BC is equal to
We mark the length of the diagonal with
Check the correct argument:
Given the rectangle ABCD
AB=X the ratio between AB and BC is equal to\( \sqrt{\frac{x}{2}} \)
We mark the length of the diagonal \( A \) with \( m \)
Check the correct argument:
Given the rectangle ABCD
AB=X
The ratio between AB and BC is \( \sqrt{\frac{x}{2}} \)
We mark the length of the diagonal A the rectangle in m
Check the correct argument:
Calculate and indicate the answer:
\( 7:(5^2-\sqrt{16})\cdot3+\sqrt{3}\cdot\sqrt{3} \)
Solve the following system of equations:
\( \begin{cases}
\sqrt{x}-\sqrt{y}=\sqrt{\sqrt{61}-6} \\
xy=9
\end{cases} \)
Given the rectangle ABCD
AB=X the ratio between AB and BC is equal to
We mark the length of the diagonal with
Check the correct argument:
Let's find side BC
Based on what we're given:
Let's divide by square root x:
Let's reduce the numerator and denominator by square root x:
We'll use the Pythagorean theorem to calculate the area of triangle ABC:
Let's substitute what we're given:
Given the rectangle ABCD
AB=X
The ratio between AB and BC is
We mark the length of the diagonal A the rectangle in m
Check the correct argument:
Given that:
Given that AB equals X
We will substitute accordingly in the formula:
Now let's focus on triangle ABC and use the Pythagorean theorem:
Let's substitute the known values:
We'll add 1 to both sides:
Calculate and indicate the answer:
4
Solve the following system of equations:
or