Find the value of the parameter x.
Find the value of the parameter x.
\( 2x^2-7x+5=0 \)
Find the value of the parameter x.
\( x^2-25=0 \)
Find the value of the parameter x.
\( (x-5)^2=0 \)
Solve for x.
\( -x^2-7x-12=0 \)
Find the value of the parameter x.
\( (x-4)^2+x(x-12)=16 \)
Find the value of the parameter x.
We will factor using trinomials, remembering that there is more than one solution for the value of X:
We will factor -7X into two numbers whose product is 10:
We will factor out a common factor:
Therefore:
Or:
Find the value of the parameter x.
We will factor using the shortened multiplication formulas:
Let's remember that there might be more than one solution for the value of x.
According to the first formula:
We'll take the square root:
We'll take the square root:
We'll use the first shortened multiplication formula:
Therefore:
Or:
Find the value of the parameter x.
We will factor using the shortened multiplication formulas:
Let's remember that there might be more than one solution for the value of x.
According to one solution, we'll take the square root:
According to the second solution, we'll use the shortened multiplication formula:
We'll use the trinomial:
or
Therefore, according to all calculations,
Solve for x.
First, factor using trinomials and remember that there might be more than one solution for the value of :
Divide by -1:
Therefore:
Or:
Find the value of the parameter x.
Let's open the parentheses, remembering that there might be more than one solution for the value of X:
Therefore:
Or:
Find the value of the parameter x.
\( 12x^3-9x^2-3x=0 \)
Find the value of the parameter x.
\( -2x(3-x)+(x-3)^2=9 \)
Find the value of the parameter x.
\( (x+5)^2=0 \)
Find the value of the parameter x.
Find the value of the parameter x.
Find the value of the parameter x.