Solve (x-8)(x+y): Binomial Expression Multiplication

Solve the following problem:

(x8)(x+y)= (x-8)(x+y)=

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Solve
00:03 Open parentheses properly, multiply each factor by each factor
00:21 Calculate the multiplications
00:43 Positive times negative always equals negative
00:47 And this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Solve the following problem:

(x8)(x+y)= (x-8)(x+y)=

2

Step-by-step solution

Let's simplify the given expression, using the expanded distribution law in order to open the parentheses :

(a+b)(c+d)=ac+ad+bc+bd (\textcolor{red}{a}+\textcolor{blue}{b})(c+d)=\textcolor{red}{a}c+\textcolor{red}{a}d+\textcolor{blue}{b}c+\textcolor{blue}{b}d

Note that in the formula template for the above distribution law, we take by default that the operation between the terms inside of the parentheses is addition. We must remember that the sign preceding the term is an inseparable part of it. We'll also apply the rules of sign multiplication and thus we can present any expression inside of the parentheses. We'll open the parentheses using the above formula, first as an expression where addition operation exists between all terms:

(x8)(x+y)(x+(8))(x+y) (x-8)(x+y)\\ (\textcolor{red}{x}+\textcolor{blue}{(-8)})(x+y)\\ Proceed to open the parentheses:

(x+(8))(x+y)xx+xy+(8)x+(8)yx2+xy8x8y (\textcolor{red}{x}+\textcolor{blue}{(-8)})(x+y)\\ \textcolor{red}{x}\cdot x+\textcolor{red}{x}\cdot y+\textcolor{blue}{(-8)}\cdot x +\textcolor{blue}{(-8)}\cdot y\\ x^2+xy-8x -8y

In calculating the above multiplications, we used the multiplication table and the laws of exponents for multiplication between terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n}

Note that in the expression that we obtained in the last stage there are four different terms, this is due to the fact that there isn't even one pair of terms where the variables (different ones) have the same exponent. Additionally the expression is already organized therefore the expression that we obtain is the final and most simplified form:
x2+xy8x8y \textcolor{purple}{ x^2}\textcolor{green}{+xy}-8x \textcolor{orange}{-8y}\\ We highlighted the different terms using colors, and as emphasized before, we made sure that the sign preceding the term is an inseparable part of it,

Therefore the correct answer is answer A.

3

Final Answer

x2+xy8x8y x^2+xy-8x-8y

Practice Quiz

Test your knowledge with interactive questions

\( (3+20)\times(12+4)= \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Algebraic Technique questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations