Solve (x-4y)(2x+?): Find the Missing Term in Polynomial Expansion

Question

Fill in the missing number

(x4y)(2x+?)=2x212y8xy+3 (x-4y)(2x+?)=2x^2-12y-8xy+3

Video Solution

Step-by-Step Solution

To solve the problem, we will expand (x4y)(2x+?) (x-4y)(2x+?) using the distributive property and match it to the given polynomial:

First, expand the expression:
(x4y)(2x+?)=x(2x+?)4y(2x+?) (x-4y)(2x+?) = x(2x+?) - 4y(2x+?)

Upon expanding, we get:
=x2x+x?4y2x4y? = x \cdot 2x + x \cdot ? - 4y \cdot 2x - 4y \cdot ? =2x2+x?8xy4y×? = 2x^2 + x \cdot ? - 8xy - 4y \times ?

We equate the expanded expression to the given polynomial 2x28xy12y+3 2x^2 - 8xy - 12y + 3 :
2x2+x×?8xy4y×?=2x28xy12y+3 2x^2 + x \times ? - 8xy - 4y \times ? = 2x^2 - 8xy - 12y + 3

By matching terms, we see:
1. The x? x \cdot ? + 4y? -4y \cdot ? needs to compensate for 12y -12y and the constant 3.
2. Equate negative constant and remaining components:
4y×?=12y -4y \times ? = -12y Therefore, ?=12y+34y=3 ? = \frac{-12y + 3}{-4y} = 3 .

After calculation, the missing number aligns with the given polynomial. Therefore, the missing number is:

3 3 .

Answer

12y+3x4y \frac{-12y+3}{x-4y}