Solve the Quadratic Equation: x²-x=0 Using Factoring

Question

x2x=0 x^2-x=0

Video Solution

Solution Steps

00:00 Find X
00:03 Factor with term X
00:09 Take out the common factor from parentheses
00:14 We want to find which solution zeros each factor in the product
00:20 This is one solution
00:23 Now let's find the second solution
00:26 And this is the solution to the question

Step-by-Step Solution

The equation in the problem is:

x2x=0 x^2-x=0

First let's note that in the left side we can factor the expression using a common factor, the largest common factor for the numbers and letters in this case is x x and this is because the first power is the lowest power in the equation and therefore is included both in the term with the second power and in the term with the first power, any power higher than this is not included in the term with the first power, which is the lowest, and therefore this is the term with the highest power that can be factored out as a common factor from all terms in the expression, so we'll continue and perform the factoring:

x2x=0x(x1)=0 x^2-x=0 \\ \downarrow\\ x(x-1)=0

Let's continue and address the fact that in the left side of the equation we got in the last step there is a multiplication of algebraic expressions and on the right side the number 0, therefore, since the only way to get 0 from multiplication is to multiply by 0, at least one of the expressions in the multiplication on the left side must equal zero,

meaning:

x=0 \boxed{x=0}

or:

x1=0x=1 x-1=0\\ \downarrow\\ \boxed{x=1}

Let's summarize then the solution to the equation:

x2x=0x(x1)=0x=0x=0x1=0x=1x=0,1 x^2-x=0 \\ \downarrow\\ x(x-1)=0 \\ \downarrow\\ x=0 \rightarrow\boxed{ x=0}\\ x-1=0 \rightarrow \boxed{x=1}\\ \downarrow\\ \boxed{x=0,1}

Therefore the correct answer is answer B.

Answer

x=0,1 x=0,1