Solve the Fraction Subtraction: 2/4 - 1/3 Step by Step

Question

Solve the following exercise:

2413=? \frac{2}{4}-\frac{1}{3}=\text{?}

Video Solution

Solution Steps

00:00 Solve
00:04 Multiply by the second denominator to find the common denominator
00:07 Make sure to multiply both numerator and denominator
00:21 Calculate the multiplications
00:28 Subtract with the common denominator
00:33 Calculate the numerator
00:37 Reduce the fraction as much as possible
00:40 Make sure to divide both numerator and denominator
00:45 And this is the solution to the problem

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Find the common denominator for the fractions 24\frac{2}{4} and 13\frac{1}{3}.
  • Step 2: Convert each fraction to have the common denominator.
  • Step 3: Perform the subtraction and simplify if necessary.

Now, let's work through these steps:

Step 1: The denominators are 44 and 33. The common denominator is the product 4×3=124 \times 3 = 12.

Step 2: Convert each fraction:
24=2×34×3=612\frac{2}{4} = \frac{2 \times 3}{4 \times 3} = \frac{6}{12}
13=1×43×4=412\frac{1}{3} = \frac{1 \times 4}{3 \times 4} = \frac{4}{12}

Step 3: Subtract the fractions with a common denominator:
612412=6412=212\frac{6}{12} - \frac{4}{12} = \frac{6 - 4}{12} = \frac{2}{12}

Finally, simplify 212\frac{2}{12}. The greatest common divisor of 2 and 12 is 2, so:
212=2÷212÷2=16\frac{2}{12} = \frac{2 \div 2}{12 \div 2} = \frac{1}{6}

Therefore, the solution to the problem is 16\frac{1}{6}.

Answer

16 \frac{1}{6}