Solve: Simplifying (10×4)^(6+ax) ÷ (4×10)^(4+ax) Expression

Question

Insert the corresponding expression:

(10×4)6+ax(4×10)4+ax= \frac{\left(10\times4\right)^{6+ax}}{\left(4\times10\right)^{4+ax}}=

Video Solution

Step-by-Step Solution

To solve this problem, we need to simplify the given expression by applying the Power of a Quotient Rule for Exponents, which states that: aman=amn \frac{a^m}{a^n} = a^{m-n} .


We are given the expression:

(10×4)6+ax(4×10)4+ax \frac{(10 \times 4)^{6+ax}}{(4 \times 10)^{4+ax}}


Notice that 10×410 \times 4 and 4×104 \times 10 are equivalent, therefore:

  • a=10×4 a = 10 \times 4
  • m=6+ax m = 6 + ax
  • n=4+ax n = 4 + ax

Applying the quotient rule, we can write:

aman=amn \frac{a^m}{a^n} = a^{m-n}


Inserting the values:

a=(10×4) a = (10 \times 4) , m=6+ax m = 6 + ax , and n=4+ax n = 4 + ax , we obtain:

a6+ax(4+ax) a^{6+ax-(4+ax)}


By simplifying the exponents:

  • (6+ax)(4+ax)=6+ax4ax=2(6 + ax) - (4 + ax) = 6 + ax - 4 - ax = 2

Therefore, the expression becomes:

(10×4)2 (10 \times 4)^2


The solution to the question is: (10×4)2(10 \times 4)^2

Answer

(10×4)2 \left(10\times4\right)^2