Solve for Time: Expanding (40a+30)(4a+5)-746 in Planetary Hours

Question

On another planet, times are slightly different.

Each hour lasts 8a+3 8a+3 minutes and each day lasts 20a4 20a-4 hours.

There are (40a+30)(4a+5)746 (40a+30)(4a+5)-746 minutes in a day.

How many hours are there in a day on the planet?

Step-by-Step Solution

To solve this problem, we'll determine the number of hours in a day on this planet:

  • Step 1: Calculate the total number of minutes in a day given as (40a+30)(4a+5)746 (40a + 30)(4a + 5) - 746 .
  • Step 2: The total number of minutes calculated per the day's duration is (20a4)×(8a+3) (20a - 4) \times (8a + 3) since there are 20a4 20a - 4 hours each lasting 8a+3 8a + 3 minutes.
  • Step 3: Equate the two expressions.

The given expression for the total minutes is:

(40a+30)(4a+5)746 (40a + 30)(4a + 5) - 746

Calculate the expression without subtraction:

(40a+30)(4a+5)=40a×4a+40a×5+30×4a+30×5 (40a + 30)(4a + 5) = 40a \times 4a + 40a \times 5 + 30 \times 4a + 30 \times 5 =160a2+200a+120a+150 = 160a^2 + 200a + 120a + 150 =160a2+320a+150 = 160a^2 + 320a + 150

Subtract 746:

160a2+320a+150746=160a2+320a596 160a^2 + 320a + 150 - 746 = 160a^2 + 320a - 596

The total minutes also correspond to:

(20a4)(8a+3) (20a - 4)(8a + 3) =20a×8a+20a×34×8a4×3 = 20a \times 8a + 20a \times 3 - 4 \times 8a - 4 \times 3 =160a2+60a32a12 = 160a^2 + 60a - 32a - 12 =160a2+28a12 = 160a^2 + 28a - 12

Now equate the expressions:

160a2+320a596=160a2+28a12 160a^2 + 320a - 596 = 160a^2 + 28a - 12

Subtract 160a2 160a^2 from both sides:

320a596=28a12 320a - 596 = 28a - 12

Subtract 28a 28a from both sides and add 596 to both sides:

320a28a=12+596 320a - 28a = -12 + 596 292a=584 292a = 584

Solve for a a :

a=584292=2 a = \frac{584}{292} = 2

Knowing a=2 a = 2 , calculate hours per day:

20a4=20(2)4=404=36 20a - 4 = 20(2) - 4 = 40 - 4 = 36

Therefore, the number of hours in a day is 2 2 hours.

The correct answer is: 2 hours.

Answer

2 hours