Solve: Adding Mixed Numbers 6⅖ + 1³/₁₄ + 2³/₇ + 1¹/₁₄

Question

627+1314+237+1114= 6\frac{2}{7}+1\frac{3}{14}+2\frac{3}{7}+1\frac{1}{14}=

Video Solution

Step-by-Step Solution

To solve this problem, we'll proceed with these steps:

  • Step 1: Convert each mixed number to an improper fraction.
  • Step 2: Calculate the least common denominator of the fractions.
  • Step 3: Express each fraction with this common denominator.
  • Step 4: Add the fractions together.
  • Step 5: Simplify the result and convert back to a mixed number if necessary.

Let's begin the solution:

Step 1: Convert the mixed numbers to improper fractions:

  • 627=6×7+27=447 6\frac{2}{7} = \frac{6 \times 7 + 2}{7} = \frac{44}{7}
  • 1314=1×14+314=1714 1\frac{3}{14} = \frac{1 \times 14 + 3}{14} = \frac{17}{14}
  • 237=2×7+37=177 2\frac{3}{7} = \frac{2 \times 7 + 3}{7} = \frac{17}{7}
  • 1114=1×14+114=1514 1\frac{1}{14} = \frac{1 \times 14 + 1}{14} = \frac{15}{14}

Step 2: Determine the least common denominator (LCD). Here, the denominators are 7 and 14. The LCD of 7 and 14 is 14.

Step 3: Express each fraction with the common denominator of 14:

  • 447=44×214=8814 \frac{44}{7} = \frac{44 \times 2}{14} = \frac{88}{14}
  • 1714=1714 \frac{17}{14} = \frac{17}{14} (already with the denominator 14)
  • 177=17×214=3414 \frac{17}{7} = \frac{17 \times 2}{14} = \frac{34}{14}
  • 1514=1514 \frac{15}{14} = \frac{15}{14} (already with the denominator 14)

Step 4: Add the fractions together:

8814+1714+3414+1514=15414 \frac{88}{14} + \frac{17}{14} + \frac{34}{14} + \frac{15}{14} = \frac{154}{14}

Step 5: Simplify the result:

15414=11×1414=11 \frac{154}{14} = \frac{11 \times 14}{14} = 11

Thus, the solution to the problem is 11 11 .

Answer

11 11