Solve: 1/3 + (2-1) Using Order of Operations

Question

13+(21)= \frac{1}{3}+(2-1)=

Video Solution

Solution Steps

00:00 Solve
00:03 Always solve parentheses first
00:06 Continue solving
00:09 And this is the solution to the question

Step-by-Step Solution

To solve the expression 13+(21) \frac{1}{3}+(2-1) , we need to follow the order of operations, often abbreviated as PEMDAS (Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right)). This problem primarily involves parentheses and addition.

We'll start by solving the expression within the parentheses:

  • The expression inside the parentheses is (21) (2-1) . Subtracting, we get:

21=1 2 - 1 = 1

After solving the parentheses, the expression becomes:

13+1 \frac{1}{3} + 1

Next, we perform the addition:

  • Since 1 1 can be written as 33 \frac{3}{3} to have a common denominator with 13 \frac{1}{3} , we add:

13+33=1+33=43 \frac{1}{3} + \frac{3}{3} = \frac{1+3}{3} = \frac{4}{3}

The fraction 43 \frac{4}{3} can also be expressed as a mixed number:

  • 43=113 \frac{4}{3} = 1 \frac{1}{3} (where 1 1 is the whole number and 13 \frac{1}{3} is the fractional part)

Thus, the correct answer is 113 1\frac{1}{3} .

Answer

113 1\frac{1}{3}