Solve (1/24)^(-2): Negative Exponent with Product Denominator

Question

Insert the corresponding expression:

(12×3×4)2= \left(\frac{1}{2\times3\times4}\right)^{-2}=

Video Solution

Step-by-Step Solution

We are given the expression: (12×3×4)2 \left(\frac{1}{2\times3\times4}\right)^{-2} . We need to simplify it using the rules of exponents.

  • Step 1: Identify the base of the exponent.
    The base is 12×3×4 \frac{1}{2\times3\times4} .

  • Step 2: Apply the rule for negative exponents.
    For a fraction 1a \frac{1}{a} with a negative exponent, (1a)n=an \left( \frac{1}{a} \right)^{-n} = a^n . Therefore, (12×3×4)2=(2×3×4)2 \left(\frac{1}{2\times3\times4}\right)^{-2} = (2\times3\times4)^2 .

  • Step 3: Expand the expression.
    (2×3×4)2=22×32×42(2\times3\times4)^2 = 2^2 \times 3^2 \times 4^2 .


Thus, the simplified expression is: 22×32×42 2^2\times3^2\times4^2

Answer

22×32×42 2^2\times3^2\times4^2