Simplify the Expression: Division of x^18 by x^7

Question

Insert the corresponding expression:

x18x7= \frac{x^{18}}{x^7}=

Video Solution

Step-by-Step Solution

We are given the expression: x18x7 \frac{x^{18}}{x^7} .

To simplify this, we use the Power of a Quotient Rule for Exponents. This rule states that when dividing like bases, you subtract the exponent in the denominator from the exponent in the numerator.

So, according to this rule:
xmxn=xmn \frac{x^m}{x^n} = x^{m-n} .

Apply this rule to our expression: x18x7=x187 \frac{x^{18}}{x^7} = x^{18-7} .

Simplify the exponent by subtracting: 187=11 18-7 = 11 .

Therefore, the simplified expression is: x11 x^{11} .

However, the expected form of the answer once applying the rule (before simplification) is: x187 x^{18-7} .

The solution to the question is: x187 x^{18-7} .

Answer

x187 x^{18-7}