Simplify the Exponential Expression: (3×7)^(2x+5) ÷ (3×7)^(x+3)

Question

Insert the corresponding expression:

(3×7)2x+5(3×7)x+3= \frac{\left(3\times7\right)^{2x+5}}{\left(3\times7\right)^{x+3}}=

Video Solution

Step-by-Step Solution

To solve the problem (3×7)2x+5(3×7)x+3= \frac{\left(3\times7\right)^{2x+5}}{\left(3\times7\right)^{x+3}}= , we need to apply the Power of a Quotient Rule for Exponents.

The Power of a Quotient Rule states that aman=amn \frac{a^m}{a^n} = a^{m-n} where a a is a nonzero number and m m and n n are integers. In this expression, a a will be equal to (3×7) (3 \times 7) .

Start by writing the expression in a simplified form using the rule:

  • The numerator is (3×7)2x+5 \left(3 \times 7\right)^{2x + 5}
  • The denominator is (3×7)x+3 \left(3 \times 7\right)^{x + 3}

Applying the quotient rule:

(3×7)2x+5(3×7)x+3=(3×7)(2x+5)(x+3) \frac{\left(3 \times 7\right)^{2x+5}}{\left(3 \times 7\right)^{x+3}} = \left(3 \times 7\right)^{(2x+5) - (x+3)}

Now we simplify the exponent:

  • (2x+5)(x+3)=2x+5x3 (2x + 5) - (x + 3) = 2x + 5 - x - 3
  • Combine like terms: 2xx+53=x+2 2x - x + 5 - 3 = x + 2

Thus, (3×7)2x+5(3×7)x+3=(3×7)x+2 \frac{\left(3 \times 7\right)^{2x+5}}{\left(3 \times 7\right)^{x+3}} = \left(3 \times 7\right)^{x+2} .

The solution to the question is: (3×7)x+2 \left(3 \times 7\right)^{x+2}

Answer

(3×7)x+2 \left(3\times7\right)^{x+2}