Simplify (a×b)^15 Divided by (a×b)^3: Power Division Problem

Question

Insert the corresponding expression:

(a×b)15(a×b)3= \frac{\left(a\times b\right)^{15}}{\left(a\times b\right)^3}=

Video Solution

Step-by-Step Solution

The given expression is:
(a×b)15(a×b)3 \frac{\left(a\times b\right)^{15}}{\left(a\times b\right)^3}

We need to apply the division rule for exponents, which states that:
xmxn=xmn \frac{x^m}{x^n} = x^{m-n}

Using this rule, we can simplify the expression by subtracting the exponent of the denominator from the exponent of the numerator:
(a×b)15(a×b)3=(a×b)153 \frac{\left(a\times b\right)^{15}}{\left(a\times b\right)^3} = \left(a\times b\right)^{15-3}

Subtracting the exponents, we have:
(a×b)12 \left(a\times b\right)^{12}

Therefore, the simplified expression is:
(a×b)12 \left(a\times b\right)^{12}

The solution to the question is:
(a×b)12 \left(a\times b\right)^{12}

Answer

(a×b)12 \left(a\times b\right)^{12}