Simplify (17×3)^17 ÷ (17×3)^11: Laws of Exponents Practice

Question

Insert the corresponding expression:

(17×3)17(17×3)11= \frac{\left(17\times3\right)^{17}}{\left(17\times3\right)^{11}}=

Video Solution

Step-by-Step Solution

Let's start solving this equation step by step. The problem provided is:


(17×3)17(17×3)11= \frac{\left(17\times3\right)^{17}}{\left(17\times3\right)^{11}}=


This problem involves the Power of a Quotient Rule for Exponents, which states:


  • If you have a quotient of terms with the same base, you can subtract the exponents: aman=amn \frac{a^m}{a^n} = a^{m-n} .

The terms in our problem already have the same base (17×3) (17\times3) . Therefore, we apply the rule directly:


(17×3)17(17×3)11=(17×3)1711 \frac{\left(17\times3\right)^{17}}{\left(17\times3\right)^{11}} = \left( 17 \times 3 \right)^{17-11}


Simplifying the exponent gives


1711=6 17 - 11 = 6


Thus, the expression simplifies to:


(17×3)6 \left(17 \times 3\right)^6


Therefore, the solution to the question is:


(17×3)6 \left(17 \times 3\right)^6

Answer

(17×3)6 \left(17\times3\right)^6