Simplify 1/(4^-6 × 7^-6): Negative Exponents in Denominators

Question

Insert the corresponding expression:

146×76= \frac{1}{4^{-6}\times7^{-6}}=

Video Solution

Solution Steps

00:00 Simplify the following problem
00:04 A product where each factor is raised to the same power (N)
00:09 Can be converted to parentheses of the entire product raised to the power of the factor (N)
00:13 We will apply this formula to our exercise
00:19 Apply the power laws in order to simplify negative exponents
00:22 Convert to the reciprocal number and raise to the power (-1)
00:25 We will apply this formula to our exercise
00:29 Convert to the reciprocal number (1 divided by the number)
00:33 Raise to the power (-1)
00:36 This is the solution

Step-by-Step Solution

To solve this problem, we will simplify the given expression 146×76 \frac{1}{4^{-6}\times7^{-6}} by using the properties of exponents.

First, note that both 46 4^{-6} and 76 7^{-6} can be combined under the power of a product property:

  • 46×76=(4×7)6 4^{-6} \times 7^{-6} = (4 \times 7)^{-6}

Then, simplify the expression inside the original fraction:

1(4×7)6=(4×7)6 \frac{1}{(4 \times 7)^{-6}} = (4 \times 7)^6

We use the principle that the negative sign in the exponent of a denominator can be inverted to a positive sign in the numerator. Hence, the negative exponent in the denominator becomes positive in the numerator.

Therefore, the correctly corresponding expression to 146×76 \frac{1}{4^{-6}\times7^{-6}} is (4×7)6 (4 \times 7)^6 .

Answer

(4×7)6 \left(4\times7\right)^6