Multiply Square Roots: Calculate √3 × √3

Question

Solve the following exercise:

33= \sqrt{3}\cdot\sqrt{3}=

Video Solution

Solution Steps

00:00 Solve
00:03 The root of a number (A) times the root of another number (B)
00:07 equals the root of their product (A times B)
00:10 Let's use this formula in our exercise, and calculate the product
00:15 And this is the solution to the question

Step-by-Step Solution

In order to simplify the given expression, we will use two laws of exponents:

a. The definition of a root as an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}} b. The law of exponents for power of a power:

(am)n=amn (a^m)^n=a^{m\cdot n}

Let's start by converting the square roots to exponents using the law mentioned in a:

33=312312= \sqrt{3}\cdot\sqrt{3}= \\ \downarrow\\ 3^{\frac{1}{2}}\cdot3^{\frac{1}{2}}= Let's continue, notice that we got a number multiplied by itself, therefore, according to the definition of exponents we can write the expression we got as a power of that same number, then we'll use the law of exponents mentioned in b and perform the exponentiation of the term in parentheses:

312312=(312)2=3122=31=3 3^{\frac{1}{2}}\cdot3^{\frac{1}{2}}= \\ (3^{\frac{1}{2}})^2=\\ 3^{\frac{1}{2}\cdot2}=\\ 3^1=\\ \boxed{3} Additionally, we identify that:

3=9 3=\sqrt{9} Therefore, the correct answer (most accurate) is answer d.

Answer

Answers a + b