Multiply Binomials: Expanding (-13-z)(-2-x) Step by Step

Question

(13z)(2x)= (-13-z)(-2-x)=

Video Solution

Step-by-Step Solution

To solve the expression (13z)(2x)(-13-z)(-2-x), we will expand it using the distributive property (FOIL):

Step 1: Multiply the first terms:
(13)(2)=26(-13) \cdot (-2) = 26

Step 2: Multiply the outer terms:
(13)(x)=13x(-13) \cdot (-x) = 13x

Step 3: Multiply the inner terms:
(z)(2)=2z(-z) \cdot (-2) = 2z

Step 4: Multiply the last terms:
(z)(x)=zx(-z) \cdot (-x) = zx

Now, combine all these results:
26+13x+2z+zx26 + 13x + 2z + zx

Therefore, the expanded form is zx+13x+2z+26zx + 13x + 2z + 26.

The correct answer matches choice (1): zx+13x+2z+26 zx + 13x + 2z + 26 .

Answer

zx+13x+2z+26 zx +13x+2z +26