Multiply (a+b+2c)(3a-2b): Expanding Two-Factor Polynomial Expression

Question

Solve:

(a+b+2c)(3a2b)= (a+b+2c)\cdot(3a-2b)=

Video Solution

Step-by-Step Solution

To solve the expression (a+b+2c)(3a2b)(a+b+2c)\cdot(3a-2b), we will apply the distributive property.

  • Step 1: Distribute each term of the first expression to every term of the second expression.

  • Step 2: Compute the resulting products.

  • Step 3: Combine like terms.

Let's execute these steps:
Step 1: Distribute:
Distribute aa: a3a+a(2b)=3a22aba \cdot 3a + a \cdot (-2b) = 3a^2 - 2ab
Distribute bb: b3a+b(2b)=3ab2b2b \cdot 3a + b \cdot (-2b) = 3ab - 2b^2
Distribute 2c2c: 2c3a+2c(2b)=6ac4bc2c \cdot 3a + 2c \cdot (-2b) = 6ac - 4bc

Step 2: Add all these products together:
3a22ab+3ab2b2+6ac4bc3a^2 - 2ab + 3ab - 2b^2 + 6ac - 4bc

Step 3: Combine like terms:
Combine 2ab+3ab -2ab + 3ab to get ab ab.

Therefore, the simplified expression is:
3a2+ab2b2+6ac4bc3a^2 + ab - 2b^2 + 6ac - 4bc.

The correct choice is 4.

Thus, the final expanded expression is 3a2+ab2b2+6ac4bc3a^2 + ab - 2b^2 + 6ac - 4bc.

Answer

3a2+ab2b2+6ac4bc 3a^2+ab-2b^2+6ac-4bc