Solve:
(a+b+2c)⋅(3a−2b)=
To solve the expression (a+b+2c)⋅(3a−2b), we will apply the distributive property.
Step 1: Distribute each term of the first expression to every term of the second expression.
Step 2: Compute the resulting products.
Step 3: Combine like terms.
Let's execute these steps:
Step 1: Distribute:
Distribute a: a⋅3a+a⋅(−2b)=3a2−2ab
Distribute b: b⋅3a+b⋅(−2b)=3ab−2b2
Distribute 2c: 2c⋅3a+2c⋅(−2b)=6ac−4bc
Step 2: Add all these products together:
3a2−2ab+3ab−2b2+6ac−4bc
Step 3: Combine like terms:
Combine −2ab+3ab to get ab.
Therefore, the simplified expression is:
3a2+ab−2b2+6ac−4bc.
The correct choice is 4.
Thus, the final expanded expression is 3a2+ab−2b2+6ac−4bc.
3a2+ab−2b2+6ac−4bc