Join expressions of equal value
(m−n)(a−4)
(4−n)(m+a)
(n−m)(4−a)
a.4m+4a−nm−na
b.ma−4m−na+4n
c.−ma+4m+na−4n
To solve this problem, we'll use the distributive property to expand each expression and find its equivalent form.
**Step 1: Expand each given expression.**
(m−n)(a−4)=m⋅a−m⋅4−n⋅a+n⋅4=ma−4m−na+4n
(4−n)(m+a)=4⋅m+4⋅a−n⋅m−n⋅a=4m+4a−nm−na
(n−m)(4−a)=n⋅4−n⋅a−m⋅4+m⋅a=4n−na−4m+ma=−ma+4m+na−4n
**Step 2: Match expanded expressions with the given options.**
ma−4m−na+4n matches option b.
4m+4a−nm−na matches option a.
−ma+4m+na−4n matches option c.
The expanded expressions match the options as follows:
Expression (m−n)(a−4) matches option b.
Expression (4−n)(m+a) matches option a.
Expression (n−m)(4−a) matches option c.
Thus, the correct matches are 1-b, 2-a, 3-c.