Evaluate (2×9×6)^(-7): Negative Exponent of a Product

Choose the expression that corresponds to the following:

(2×9×6)7= \left(2\times9\times6\right)^{-7}=

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Simplify the following problem
00:03 According to the exponent laws, when we have a negative exponent
00:08 We can convert to the reciprocal number and obtain a positive exponent
00:12 We will apply this formula to our exercise
00:17 We'll write the reciprocal number (1 divided by the number)
00:21 Proceed to raise to the positive exponent
00:24 This is the solution

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Choose the expression that corresponds to the following:

(2×9×6)7= \left(2\times9\times6\right)^{-7}=

2

Step-by-step solution

We first need to apply the exponent rule for powers with negative exponents, specifically the rule for the power of a product which states that:
(a×b×c)n=1(a×b×c)n \left(a \times b \times c \right)^{-n} = \frac{1}{(a \times b \times c)^n} .

In this problem, we have three numbers multiplied inside the parentheses: 2, 9, and 6. The exponent is -7.

By applying the power of a product rule with a negative exponent here, we get:
(2×9×6)7=1(2×9×6)7 \left(2\times9\times6\right)^{-7} = \frac{1}{\left(2\times9\times6\right)^7} .

Therefore the correct answer is:
1(2×9×6)7 \frac{1}{\left(2\times9\times6\right)^7}

.

3

Final Answer

1(2×9×6)7 \frac{1}{\left(2\times9\times6\right)^7}

Practice Quiz

Test your knowledge with interactive questions

\( 112^0=\text{?} \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Exponents Rules questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations