Distributive Property: Simplifying (a+c+d)(a+e) Step-by-Step

Question

It is possible to use the distributive property to simplify the expression

(a+c+d)(a+e) (a+c+d)(a+e)

Video Solution

Step-by-Step Solution

To solve this problem using the distributive property, let's expand the given expression (a+c+d)(a+e)(a+c+d)(a+e) step by step.

Step 1: Expand (a+c+d)(a+e)(a+c+d)(a+e) using the distributive property:

  • Distribute aa over (a+e)(a+e):
    a(a+e)=a2+aea(a+e) = a^2 + ae
  • Distribute cc over (a+e)(a+e):
    c(a+e)=ca+cec(a+e) = ca + ce
  • Distribute dd over (a+e)(a+e):
    d(a+e)=da+ded(a+e) = da + de

Step 2: Combine all distributed terms:

a2+ae+ca+ce+da+dea^2 + ae + ca + ce + da + de

Thus, the expression simplifies to a2+ae+ca+ce+da+de\bm{a^2 + ae + ca + ce + da + de}.

Therefore, the solution to the problem is Yes, (a2+ae+ca+ce+da+de)(a^2 + ae + ca + ce + da + de), which matches choice 3.

Answer

Yes, a2+ae+ca+ce+da+de a^2+ae+ca+ce+da+de