Compare Complex Expressions: ((x×y)⁵)¹² vs ((x×y)¹⁰)²)³

Question

Insert the compatible sign:

>,<,=

((x×y)5)12(((x×y)10)2)3 \left(\left(x\times y\right)^5\right)^{12}\Box\left(\left(\left(x\times y\right)^{10}\right)^2\right)^3

Step-by-Step Solution

To solve the problem, we need to simplify and compare the following two expressions:

((x×y)5)12and(((x×y)10)2)3 \left(\left(x \times y\right)^5\right)^{12} \quad \text{and} \quad \left(\left(\left(x \times y\right)^{10}\right)^2\right)^3

Let's simplify each expression:

  • The first expression ((x×y)5)12\left(\left(x \times y\right)^5\right)^{12}.
    Using the power of a power rule, (am)n=amn\left(a^m\right)^n = a^{m \cdot n}, we have:
  • \end{ul>

    ((x×y)5)12=(x×y)512=(x×y)60\left(\left(x \times y\right)^5\right)^{12} = \left(x \times y\right)^{5 \cdot 12} = \left(x \times y\right)^{60}

    • The second expression (((x×y)10)2)3\left(\left(\left(x \times y\right)^{10}\right)^2\right)^3.
      Similarly, apply the power of a power rule twice:

    (((x×y)10)2)3=((x×y)102)3\left(\left(\left(x \times y\right)^{10}\right)^2\right)^3 = \left(\left(x \times y\right)^{10 \cdot 2}\right)^3

    =(x×y)203=(x×y)60= \left(x \times y\right)^{20 \cdot 3} = \left(x \times y\right)^{60}

    After simplification, both expressions become (x×y)60\left(x \times y\right)^{60}.

    Therefore, the relationship between the two expressions is:

    (x×y)60=(x×y)60\left(x \times y\right)^{60} = \left(x \times y\right)^{60}

    =

    Thus, the correct choice from the provided options is:

    : =

    I am confident that the solution is correct, as both expressions simplify to the same value.

Answer

=