Given that the volume of the cuboid is equal to 72 cm³
The length of the cuboid is equal to 6 cm and the height is equal to half the length.
Calculate the surface of the cuboid
We have hundreds of course questions with personalized recommendations + Account 100% premium
Given that the volume of the cuboid is equal to 72 cm³
The length of the cuboid is equal to 6 cm and the height is equal to half the length.
Calculate the surface of the cuboid
The first step is to calculate the relevant data for all the components of the box.
The length of the box = 6
Given that the height of a cuboid is equal to half its length we are able to deduce the height of the box as follows : 6/2= 3
Hence the height = 3
In order to determine the width, we insert the known data into the formula for the volume of the box:
height*length*width = volume of the cuboid.
3*6*width = 72
18*width=72
We divide by 18:
Hence the width = 4
We are now able to return to the initial question regarding the surface of the cuboid.
Remember that the formula for the surface area is:
(height*length+height*width+length*width)*2
We insert the known data leaving us with the following result:
(3*6+4*3+4*6)*2=
(12+24+18)*2=
(54)*2=
108
108 cm²
A cuboid is shown below:
What is the surface area of the cuboid?
Get unlimited access to all 18 Cuboids questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime