Calculate (-2)^7: Evaluating the Seventh Power of a Negative Number

(2)7= (-2)^7=

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Solve
00:03 First, let's calculate the sign
00:06 Odd power, therefore the sign will be negative
00:16 Let's calculate the power
00:22 And this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

(2)7= (-2)^7=

2

Step-by-step solution

To solve for (2)7(-2)^7, follow these steps:

  • Step 1: Identify the base and the exponent given in the expression, which are 2-2 and 77, respectively.
  • Step 2: Recognize that since the exponent is 77, which is an odd number, the result of the power will remain negative: (2)7(-2)^7 will be (27)- (2^7).
  • Step 3: Compute 272^7. This involves multiplying 22 by itself 77 times:
    2×2=42 \times 2 = 4
    4×2=84 \times 2 = 8
    8×2=168 \times 2 = 16
    16×2=3216 \times 2 = 32
    32×2=6432 \times 2 = 64
    64×2=12864 \times 2 = 128
    Thus, 27=1282^7 = 128.
  • Step 4: Apply the negative sign to the result of 272^7, resulting in 128-128.

Therefore, the value of (2)7(-2)^7 is 128-128.

3

Final Answer

128 -128

Practice Quiz

Test your knowledge with interactive questions

\( (-2)^7= \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Powers - special cases questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations