Break down the expression into basic terms:
3y3 3y^3 3y3
To break down the expression 3y3 3y^3 3y3 into its basic terms, we understand the components of the expression:
3 is a constant multiplier 3 \, \text{is a constant multiplier} 3is a constant multiplier
y3 y^3 y3 can be rewritten as y⋅y⋅y y \cdot y \cdot y y⋅y⋅y
Thus, 3y3 3y^3 3y3 can be decomposed into 3⋅y⋅y⋅y 3 \cdot y \cdot y \cdot y 3⋅y⋅y⋅y.
3⋅y⋅y⋅y 3\cdot y\cdot y \cdot y 3⋅y⋅y⋅y