An acute triangle has all acute angles, meaning each of its three angles measures less than degrees and the sum of all three together equals degrees.
An acute triangle has all acute angles, meaning each of its three angles measures less than degrees and the sum of all three together equals degrees.
In a right triangle, the side opposite the right angle is called....?
Next, we will look at some examples of acute triangles:
Assignment:
Determine which of the following triangles is obtuse, which is acute, and which is a right triangle:
Solution:
A. We will examine if the Pythagorean theorem holds for this triangle:
The sum of the squares of the perpendicular sides is greater than the square of the remaining side, therefore it is an acute-angled triangle.
B. Now we will examine this triangle:
The sum of the squares of the perpendicular sides is greater than the square of the remaining side, therefore it is an obtuse-angled triangle.
C. The longest side of the 3 will be treated as the hypotenuse.
The Pythagorean theorem holds true and therefore triangle 3 is a right triangle.
Answer:
A-acute angle acute B-obtuse angle obtuse C-right angle right.
In an isosceles triangle, what are each of the two equal sides called ?
In a right triangle, the two sides that form a right angle are called...?
Is the triangle in the drawing a right triangle?
Let's look at 3 angles
Angle A is equal to
Angle B is equal to
Angle C is equal to
Task:
Can these angles form a triangle?
Solution:
The sum of the angles in a triangle is equal to ,
therefore these angles can form a triangle.
Answer:
Yes, since the sum of the internal angles of a triangle is equal to .
Angle A is equal to
Angle B is equal to
Angle C is equal to
Task:
Can these angles form a triangle?
Solution:
The sum of the angles is greater than ,
therefore these angles cannot form a triangle.
Answer:
No, since the sum of the internal angles must be , and in this case the angles add up to .
In a right triangle, the side opposite the right angle is called....?
The problem requires us to identify the side of a right triangle that is opposite to its right angle.
In right triangles, one of the most crucial elements to recognize is the presence of a right angle (90 degrees).
The side that is directly across or opposite the right angle is known as the hypotenuse. It is also the longest side of a right triangle.
Therefore, when asked for the side opposite the right angle in a right triangle, the correct term is the hypotenuse.
Selection from the given choices corroborates our analysis:
Therefore, the correct answer is .
Hypotenuse
In an isosceles triangle, what are each of the two equal sides called ?
In an isosceles triangle, there are three sides: two sides of equal length and one distinct side. Our task is to identify what the equal sides are called.
To address this, let's review the basic properties of an isosceles triangle:
Therefore, each of the two equal sides in an isosceles triangle is called a "leg."
In our problem, we confirm that the correct terminology for these two equal sides is indeed "legs," distinguishing them from the "base," which is the unequal side. This aligns with both the typical definitions and properties of an isosceles triangle.
Thus, the equal sides in an isosceles triangle are known as legs.
Legs
In a right triangle, the two sides that form a right angle are called...?
In a right triangle, there are specific terms for the sides. The two sides that form the right angle are referred to as the legs of the triangle. To differentiate, the side opposite the right angle is called the hypotenuse, which is distinct due to being the longest side. Hence, in response to the problem, the sides forming the right angle are correctly identified as Legs.
Legs
Is the triangle in the drawing a right triangle?
Due to the presence of the 90 degree angle symbol we can determine that this is indeed a right-angled triangle.
Yes
Does the diagram show an obtuse triangle?
To determine if the triangle shown in the diagram is obtuse, we proceed as follows:
Based on the observation above, notably from the triangle's longest side against the base, it's clear that one angle is larger than . Hence, the triangle in the diagram is indeed an obtuse triangle.
Therefore, the correct answer is Yes.
Yes
Is the triangle in the drawing a right triangle?
Fill in the blanks:
In an isosceles triangle, the angle between two ___ is called the "___ angle".
Is the triangle in the drawing a right triangle?