Acute triangle

🏆Practice types of triangles

Definition of Acute Triangle

An acute triangle has all acute angles, meaning each of its three angles measures less than 90° 90° degrees and the sum of all three together equals 180° 180° degrees. 

Start practice

Test yourself on types of triangles!

In a right triangle, the side opposite the right angle is called....?

Practice more now

Next, we will look at some examples of acute triangles:

Acute triangle

A1 - acute triangle

3 Examples of acute triangles

3 Examples of acute triangles


Exercises with Acute Triangles

Exercise 1

Determine which of the following triangles is obtuse, which is acute, and which is a right triangle

Assignment:

Determine which of the following triangles is obtuse, which is acute, and which is a right triangle:

Solution:

A. We will examine if the Pythagorean theorem holds for this triangle:

52+82=92 5²+8²=9²

25+64=81 25+64=81

89>81 89>81

The sum of the squares of the perpendicular sides is greater than the square of the remaining side, therefore it is an acute-angled triangle.

B. Now we will examine this triangle:

72+72=132 7²+7²=13²

49+49=169 49+49=169

169>98 169>98

The sum of the squares of the perpendicular sides is greater than the square of the remaining side, therefore it is an obtuse-angled triangle.

10.6113 10.6≈\sqrt{113}

C. The longest side of the 3 will be treated as the hypotenuse.

72+82=1132 7²+8²=\sqrt{113}²

49+64=113 49+64=113

113=113 113=113

The Pythagorean theorem holds true and therefore triangle 3 is a right triangle.

Answer:

A-acute angle acute B-obtuse angle obtuse C-right angle right.


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Exercise 2

Let's look at 3 angles

Angle A is equal to 30° 30°

Angle B is equal to 60° 60°

Angle C is equal to 90° 90°

Task:

Can these angles form a triangle?

Solution:

30+60+90=180 30+60+90=180

The sum of the angles in a triangle is equal to 180° 180° ,

therefore these angles can form a triangle.

Answer:

Yes, since the sum of the internal angles of a triangle is equal to 180° 180° .


Exercise 3

Angle A is equal to 90° 90°

Angle B is equal to 115° 115°

Angle C is equal to 35° 35°

Task:

Can these angles form a triangle?

Solution:

90°+115°+35°=240° 90°+115°+35°=240°

The sum of the angles is greater than 180° 180° ,

therefore these angles cannot form a triangle.

Answer:

No, since the sum of the internal angles must be 180° 180° , and in this case the angles add up to 240° 240° .


Examples and exercises with solutions for acute triangles

Exercise #1

In a right triangle, the side opposite the right angle is called....?

Step-by-Step Solution

The problem requires us to identify the side of a right triangle that is opposite to its right angle.
In right triangles, one of the most crucial elements to recognize is the presence of a right angle (90 degrees).
The side that is directly across or opposite the right angle is known as the hypotenuse. It is also the longest side of a right triangle.
Therefore, when asked for the side opposite the right angle in a right triangle, the correct term is the hypotenuse.

Selection from the given choices corroborates our analysis:

  • Choice 1: Leg - In the context of right triangles, the "legs" are the two sides that form the right angle, not the side opposite to it.
  • Choice 2: Hypotenuse - This is the correct identification for the side opposite the right angle.

Therefore, the correct answer is Hypotenuse \text{Hypotenuse} .

Answer

Hypotenuse

Exercise #2

In an isosceles triangle, what are each of the two equal sides called ?

Step-by-Step Solution

In an isosceles triangle, there are three sides: two sides of equal length and one distinct side. Our task is to identify what the equal sides are called.

To address this, let's review the basic properties of an isosceles triangle:

  • An isosceles triangle is defined as a triangle with at least two sides of equal length.
  • The side that is different in length from the other two is usually called the "base" of the triangle.
  • The two equal sides of an isosceles triangle are referred to as the "legs."

Therefore, each of the two equal sides in an isosceles triangle is called a "leg."

In our problem, we confirm that the correct terminology for these two equal sides is indeed "legs," distinguishing them from the "base," which is the unequal side. This aligns with both the typical definitions and properties of an isosceles triangle.

Thus, the equal sides in an isosceles triangle are known as legs.

Answer

Legs

Exercise #3

In a right triangle, the two sides that form a right angle are called...?

Step-by-Step Solution

In a right triangle, there are specific terms for the sides. The two sides that form the right angle are referred to as the legs of the triangle. To differentiate, the side opposite the right angle is called the hypotenuse, which is distinct due to being the longest side. Hence, in response to the problem, the sides forming the right angle are correctly identified as Legs.

Answer

Legs

Exercise #4

Is the triangle in the drawing a right triangle?

Step-by-Step Solution

Due to the presence of the 90 degree angle symbol we can determine that this is indeed a right-angled triangle.

Answer

Yes

Exercise #5

Does the diagram show an obtuse triangle?

Video Solution

Step-by-Step Solution

To determine if the triangle shown in the diagram is obtuse, we proceed as follows:

  • Step 1: Identify that the diagram is indeed a triangle by observing the confluence of three edges forming a closed shape.
  • Step 2: Appreciate the geometric arrangement of the triangle, focusing on the sides' lengths and angles visually.
  • Step 3: Noticeably, the longest side of the triangle represents a noticeable tilt indicating the presence of an obtuse angle.

Based on the observation above, notably from the triangle's longest side against the base, it's clear that one angle is larger than 9090^\circ. Hence, the triangle in the diagram is indeed an obtuse triangle.

Therefore, the correct answer is Yes.

Answer

Yes

Do you know what the answer is?
Start practice
Related Subjects