Examples with solutions for Perimeter of a Trapezoid: Finding Area based off Perimeter and Vice Versa

Exercise #1

Shown below is the isosceles trapezoid ABCD.

Given in cm:
BC = 7  

Height of the trapezoid (h) = 5

Perimeter of the trapezoid (P) = 34

Calculate the area of the trapezoid.

777h=5h=5h=5AAABBBCCCDDDEEE

Video Solution

Step-by-Step Solution

Since ABCD is a trapezoid, one can determine that:

AD=BC=7 AD=BC=7

Thus the formula to find the area will be

SABCD=(AB+DC)×h2 S_{ABCD}=\frac{(AB+DC)\times h}{2}

Since we are given the perimeter of the trapezoid, we can findAB+DC AB+DC

PABCD=7+AB+7+DC P_{ABCD}=7+AB+7+DC

34=14+AB+DC 34=14+AB+DC

3414=AB+DC 34-14=AB+DC

20=AB+DC 20=AB+DC

Now we will place the data we obtained into the formula in order to calculate the area of the trapezoid:

S=20×52=1002=50 S=\frac{20\times5}{2}=\frac{100}{2}=50

Answer

50

Exercise #2

ABCD is an isosceles trapezoid.

AB = 3

CD = 6

The area of the trapezoid is 9 cm².

What is the perimeter of the trapezoid?

333666AAABBBDDDCCCEEE

Video Solution

Step-by-Step Solution

We can find the height BE by calculating the trapezoidal area formula:

S=(AB+CD)2×h S=\frac{(AB+CD)}{2}\times h

We replace the known data: 9=(3+6)2×BE 9=\frac{(3+6)}{2}\times BE

We multiply by 2 to get rid of the fraction:

9×2=9×BE 9\times2=9\times BE

18=9BE 18=9BE

We divide the two sections by 9:

189=9BE9 \frac{18}{9}=\frac{9BE}{9}

2=BE 2=BE

If we draw the height from A to CD we get a rectangle and two congruent triangles. That is:

AF=BE=2 AF=BE=2

AB=FE=3 AB=FE=3

ED=CF=1.5 ED=CF=1.5

Now we can find one of the legs through the Pythagorean theorem.

We focus on triangle BED:

BE2+ED2=BD2 BE^2+ED^2=BD^2

We replace the known data:

22+1.52=BD2 2^2+1.5^2=BD^2

4+2.25=DB2 4+2.25=DB^2

6.25=DB2 6.25=DB^2

We extract the root:

6.25=DB \sqrt{6.25}=DB

2.5=DB 2.5=DB

Now that we have found DB, it can be argued that:

AC=BD=2.5 AC=BD=2.5

We calculate the perimeter of the trapezoid:6+3+2.5+2.5= 6+3+2.5+2.5=

9+5=14 9+5=14

Answer

14

Exercise #3

The area of a right-angled trapezoid is equal to 102.

Calculate its perimeter using the data in the figure below.

S=102S=102S=102888666121212AAABBBCCCDDD

Video Solution

Answer

x=36.2 x=36.2

Exercise #4

Look at the trapezoid below:

S=102S=102S=102121212666888If the area of the trapezoid is 102, then what is its perimeter?

Video Solution

Answer

36.2

Exercise #5

The perimeter of the trapezoid below is:

16.5+24.25 16.5+\sqrt{24.25}

Calculate the area of the trapezoid.

555777AAABBBDDDCCC

Video Solution

Answer

27

Exercise #6

ABCD is an isosceles trapezoid.

The perimeter of the trapezoid is equal to 22 cm.

Work out the area of the trapezoid.

444XXX888XXXAAABBBDDDCCCEEE

Video Solution

Answer

6×21 6\times\sqrt{21}