Examples with solutions for Associative Property: By multiplication only

Exercise #1

7×5×2= 7\times5\times2=

Video Solution

Step-by-Step Solution

According to the rules of the order of operations, you can use the substitution property and start the exercise from right to left to comfortably calculate:

5×2=10 5\times2=10

7×10=70 7\times10=70

Answer

70

Exercise #2

3×5×4= 3\times5\times4=

Video Solution

Step-by-Step Solution

According to the order of operations, we must solve the exercise from left to right.

But, this can leave us with awkward or complicated numbers to calculate.

Since the entire exercise is a multiplication, you can use the associative property to reorganize the exercise:

3*5*4=

We will start by calculating the second exercise, so we will mark it with parentheses:

3*(5*4)=

3*(20)=

Now, we can easily solve the rest of the exercise:

3*20=60

Answer

60

Exercise #3

12×5×6= 12\times5\times6=

Video Solution

Step-by-Step Solution

According to the rules of the order of operations, we solve the exercise from left to right:

12×5=60 12\times5=60

60×6=360 60\times6=360

Answer

360

Exercise #4

35×6×2= 35\times6\times2=

Video Solution

Step-by-Step Solution

According to the rules of the order of operations, you can use the substitution property and organize the exercise in a more convenient way to calculate:

35×2×6= 35\times2\times6=

We solve the exercise from left to right:

35×2=70 35\times2=70

70×2=140 70\times2=140

Answer

420

Exercise #5

11x×5×6= 11x\times5\times6=

Video Solution

Step-by-Step Solution

Let's look at the exercise, and we'll see that we have two "regular" numbers and one number with a variable.
Since this is a multiplication exercise, there's no problem multiplying a number with a variable by a number without a variable.

In fact, it's important to remember that a variable attached to a number represents multiplication itself, for example in this case: 11×x 11\times x
Therefore, we can use the distributive property to separate the variable, and come back to it later.
We'll solve the exercise from right to left since it's simpler this way.

5×6=30 5\times6=30

Now we'll get the exercise:

11x×30= 11x\times30=

We'll put aside the x and add it at the end of the exercise.

Solve the exercise in an organized way to make the solving process easier for ourselves.

It's important to maintain the correct order of solving, meaning first multiply the ones of the first number by the ones of the second number,
then the tens of the first number by the ones of the second number, and so on.

30×11=330 30\\\times11\\=330

Don't forget to add the variable at the end, and thus the answer will be:

330x 330x

Answer

330x 330x

Exercise #6

2x×4.65×6.3= 2x\times4.65\times6.3=

Video Solution

Step-by-Step Solution

Let's look at the exercise, and we'll see that we have two "regular" numbers and one number with a variable.
Since this is a multiplication exercise, there's no problem multiplying a number with a variable by a number without a variable.

In fact, it's important to remember that a variable attached to a number represents multiplication by itself, for example in this case: 2×x 2\times x
Therefore, we can use the distributive property to separate the variable, and come back to it later.
We'll solve the exercise from left to right.

We'll solve the left exercise by breaking down the decimal number into an addition problem of a whole number and a decimal number as follows:

2×(4+0.65)= 2\times(4+0.65)=

We'll multiply 2 by each term in parentheses:

(2×4)+(2×0.65)= (2\times4)+(2\times0.65)=

We'll solve each of the expressions in parentheses and get:

8+1.3=9.3 8+1.3=9.3

Now we'll get the exercise:

9.3×6.3= 9.3\times6.3=

We'll solve the exercise vertically to make the process easier for ourselves.

It's important to be careful with the proper placement of the exercise, using the decimal point as an anchor.
Then we can multiply in order, first the ones digit of the first number by the ones digit of the second number,
then the tens digit of the first number by the ones digit of the second number, and so on.

9.3×6.3=58.59 9.3\\\times6.3\\=58.59

Don't forget to add the variable at the end, and the answer will be:

58.59x 58.59x

Answer

58.59x 58.59x

Exercise #7

15.6×5.2x×0.3= 15.6\times5.2x\times0.3=

Video Solution

Step-by-Step Solution

Let's look at the exercise, and we'll see that we have two "regular" numbers and one number with a variable.
Since this is a multiplication exercise, there's no problem multiplying a number with a variable by a number without a variable.

In fact, it's important to remember that a variable attached to a number represents multiplication by itself, for example in this case: 5.2×x 5.2\times x
Therefore, we can use the distributive property to separate the variable, and come back to it later.
We'll solve the exercise from left to right.

We'll solve the left exercise vertically to avoid confusion and get:

     15.6×    5.2= 81.12 ~~~~~15.6 \\\times~~~~5.2 \\=~81.12

It's important to be careful with the correct placement of the exercise, where the decimal point serves as an anchor.
Then we can multiply in order, first the ones digit of the first number by the ones digit of the second number,
then the tens digit of the first number by the ones digit of the second number, and so on.

Now we'll get the exercise:

81.21×0.3= 81.21\times0.3=

Let's remember that:

0.3=0.30 0.3=\text{0}.30

And we'll get:

24.336 24.336

Let's not forget to add the variable at the end, and thus the answer will be:

24.336x 24.336 x

Answer

24.336x 24.336x

Exercise #8

Solve the following problem:

356×556×13x= 3\frac{5}{6}\times5\frac{5}{6}\times\frac{1}{3}x=

Video Solution

Step-by-Step Solution

First, let's convert all mixed fractions to simple fractions:

3×6+56×5×6+56×13x= \frac{3\times6+5}{6}\times\frac{5\times6+5}{6}\times\frac{1}{3}x=

Let's solve the exercises with the eight fractions:

18+56×30+56×13x= \frac{18+5}{6}\times\frac{30+5}{6}\times\frac{1}{3}x=

236×356×13x= \frac{23}{6}\times\frac{35}{6}\times\frac{1}{3}x=

Since the exercise only involves multiplication, we'll combine all the numerators and denominators:

23×356×6×3x=805108x \frac{23\times35}{6\times6\times3}x=\frac{805}{108}x

Answer

805108x \frac{805}{108}x